SAMPLE # Technology policy and the knowledge-based economy China's technological capabilities Science & research capabilities Complex manufacturing and assembly-line skills Basic manufacturing capabilities e.g. forging, welding, machining - China emerged from its socialist era with a strong base (industrial skills are widespread) also emerged with relatively strong capabilities in science and research capabilities - The middle is quite weak China has few firms with significant leading-edge technologies - Thus attempting to move down its scientific capabilities to the factory floor, upgrade existing factories to move up the value chain # Triad for analysing technology in an economic context | <u> </u> | That for analysing technology in an economic context | | | | | |-----------------------------|---|--|--|--|--| | Factor | Overview | | | | | | <u>Technology</u>
effort | The volume of <u>research</u> committed to R&D The <u>policy</u> strategy that guides R&D Contributes to accumulating knowledge (generates knowledge) | | | | | | Human
resource base | Defines the possible <u>capabilities</u> Reflects the <u>LR outcome of the technology base</u> Contributes to accumulating knowledge (generates knowledge) | | | | | | Institutions and incentives | Determines what ideas and technologies <u>actually get applied</u> to the production process Determines how much of the accumulated knowledge will be used (applies knowledge) | | | | | ### Technology effort (R&D) - USUALLY: Modern technologies / innovations almost entirely from the rich countries - o In a way can benefit developing nations, who can <u>pick and choose the successful ones to adopt</u> rather than spend a fortune on speculative / risky R&D ventures However – practical <u>obstacles</u> exist e.g. time and skill required to <u>identify</u> and <u>adopt</u> appropriate technology; initial low productivity post-introduction; IP <u>barriers to access</u> Figure 15.2 R&D expenditures (percent GDP) increase once more – through numerous channels Is now catching up to OECD levels # China's R&D / S&T (science and tech) expenditure - **During reform era**, China tried to keep government **R&D outlays high** - However this level was not sustainable → declining SOE revenues, existing R&D effort was not economically viable - R&D scaled back to levels actually in line with other nations, however China actively sought higher R&D/GDP ratios - From 2000, outlays began to ### Strategies of R&D investment - R&D expenditure has widespread support - Restless ongoing search for institutions and policies to support china's ongoing drive to become technology power - When policy proves ineffective, it is dropped. New policies trialled all the time. - Today: technology effort extremely diverse + multi-stranded | Strategy | Overview | |--|---| | Do it yourself (socialist era) Still exists, but confined mostly to national security | Leaders in China set a few key tasks, planners coordinate and fund flexible multidisciplinary and multiskilled research groups to pursue these goals Effective for military purposes – development of bombs and missiles However – similar problem as with the Soviets – bad at transferring the technology to the consumer / civilian economy Planners do not have the technical capabilities to evaluate technologies, so developers can use more experimental methods that are not economically viable No incentives to commercialise their inventions | | Buy it (Third Plenum) As above | Massive purchases of industrial machinery seen as quickest route of out China's scientific isolation Local governments allowed to import equipment Problem: importation often excessive, duplication common Very expensive, ineffective, inefficient way of introducing new tech In the 80s as SOEs' revenues fell, they could no longer afford prestige purchases | | Bargain for it (80s) | China initiated complex negotiations with a large number of MNCs – trading Chinese market access for technology sharing China sought highly restrictive / comprehensive deals; MNCs unwilling to give up tech Very few projects actually succeeded in producing technology transfer | | Seed it | China scaled back direct government research – developed more sophisticated funding | # (mid-late 80s) Budget <u>allocations</u> to research institutions <u>cut</u> – partially <u>replaced</u> with a <u>system of competitive</u> Required submissions to funding agencies – key is Natural Sciences Foundation New program to diffuse key civilian technologies (86-3 Program) Later succeeded by the 97-3 Program Other plans: Torch Program – bank loans for technology adoption by enterprises; Spark plan – technological upgrading of TVEs **Encourage spin-**Policymakers tried to give research institutes stronger incentives to diffuse technologies into the offs civilian economy Institutes and universities allowed to contract with enterprises to provide technical services – also (80s) allowed to establish their own commercial subsidiaries Resulted in some leading computer / IT firms - e.g. Lenovo spun off from the Institute for Computer Technology of the Chinese Academy of Sciences (1984) Open up to FDI FDI inflows introduced funding into medium- and high-tech sectors, also integrated China into global production networks of high-technology items (1992 onwards) New deal – market access and IPR protection in exchange for technology transfer Accession to WTO in 2001 codified and made binding the promises China made to promote this deal Support 1999 – Chinese firms given widespread support to enter high-tech fields as private firms and start domestic Government supports virtually all technologically advanced spin-offs from schools and research entrepreneurinstitutes ship (late 90s Tax breaks, low-interest credit access, preference in procurement decisions onward) #### Rankings - 22 Global Innovation Index 2017 - 16 Quality of Innovation 2017 - Shenzhen-Hong Kong the 2nd most inventive subnational cluster in the world - o Tokyo-Yokohama 1st; Silicon Valley (San Jose-San Fran) 3rd ## Human capital resource base - China has an <u>enormous number of technical personnel employed</u> - Very high number of researchers however as a % of the workforcem, still <u>below OECD levels</u> - Number of <u>STEM graduates on the increase</u> (just under half of all graduates) - Returning students from overseas studies are also extremely valuable, on the increase - High proportion of students do in fact return - Usually return with some work experience ### Institutions and incentives ### **Current** policy stance - China has <u>abandoned much of the ideological baggage</u> that once inhibited technological development (think DIY, bargain for it policies) - <u>"National industry" has been redefined</u> initially only meant <u>SOEs</u>, but now <u>includes foreign-invested</u> <u>firms</u>, <u>start-up</u> private enterprises (e.g. **Huawei**, Lenovo) - Increasingly relaxed approach to foreign investment and technology transfer contracts ### Regulatory / institutional efforts - Human resources are the foundation of development policy increased spending on education - High-tech trade the top priority of foreign trade development - <u>Corporate governance improvements</u> separation of management & ownership - **Technology policy:** Tax breaks, subsidised credit, procurement preferences, lower land prices, cooperative regulatory procedures # Fintech and the financial system Key factors contributing to the surge/rise of fintech in China ### • Light regulation - China has allowed trade and manufacturing companies to be granted finance-related operating licences - E.g. Alibaba, Tencent (AliPay, WeChat Pay) ### Underservicing <u>Previously Repressive financial policy</u> has created an <u>undersupply</u> of financial services, especially for SMEs, low income households # • Transaction facilitation - IT tools, especially <u>mobile terminals and big data analysis</u>, increasingly offer <u>effective</u> ways for internet finance to increase its <u>efficiency</u>, <u>control risk</u> - Biggest issue is pricing, which is generally harder to do for SMEs, low-income households as they have fewer assets to collateralise, less info available – this problem can be solved with big data. data collection china has millions of mobile phones — there is ubiquitous connectivity # Theoretical frameworks for EMNEs' internationalisation # Early development of internationalisation theories | Strategy | Overview | |---|--| | 1950-60s
Vernon's product
Life Cycle
framework | Exploitative internationalisation with competitive advantage - Attract FDI into areas where
Chinese firms have a competitive advantage | | 1960s-70s Buckley's Internationalisation theory | Internalising imperfect market through internationalisation expansion –Cross-border "vertical integration" – emphasis on the distribution / supply side from OVERSEAS – Yi bitched out a student who suggested this was vertical integration | | 1980s-90s DUNNING framework | OLI – ownership, location, internalisation advantage Three potential sources of advantage that may underlie a firm's decision to become MN Ownership advantage – often relate to assets that can be applied to production at different locations without reducing their effectiveness e.g. product development, patents, marketing skills (intangible assets) Location advantage – where firms choose to locate Internalisation advantages – influences how a firm chooses to operate overseas, trading off the savings in transaction costs | # Linkage-leverage-learning framework (MATHEWS) - EMNEs do not build their international empires entirely from their own resources and acquired capabilities - o They <u>link</u> these with <u>existing players and leverage resources</u> from them - **LLL** is a strategic framework <u>focused on accelerated internationalisation</u> (O is missing in OLI) not own proprietary tech, management capabilities not as developed. | L | Overview | | | |----------|--|--|--| | Linkage | <u>Connecting</u> with and making use of <u>technology-rich companies</u> or companies already <u>active</u> in target markets. (Identifying and bridging gaps) Firms with a <u>shortage</u> of <u>strategic resources</u> can make up the <u>deficiency</u> through linkages | | | | Leverage | Gaining access to technologies and / or market position Explores ways that linkages can be established so that resources can be leveraged, the resources themselves and their leverage potential E.g. through JVs, supply chain contracts, technology licensing agreements, partnerships focused on market entry | | | | Learning | Repeated application of linkage and leverage as a means of building the dynamic capabilities of the
EMNE, equipping it with necessary capabilities | | | ••• . # SOEs today – China still has the largest number of SOEs # Central vs. local comparison | Metric | Central | Local | |---------------------|-------------------|-------------------| | Number of firms | 52,000 | 103,000 | | Number of employees | 17.63m | 19.35m | | Total assets | 46.8 trillion RMB | 55.5 trillion RMB | #### SOF Governance | 30L dovernance | | | |-------------------------|--|--| | Level of SASAC | Responsibilities | SOEs under control | | State Council (Central) | Petroleum and refining Metallurgy Electricity Military industry Telecommunications | Sinopec PetroChina China Mobile China International Marine
Containers | | Ministry of Finance | TransportCultural enterprisesFinance | China Railway GroupICBCABC | | Local | Industrial enterprisesUtility enterprisesUrban development and investments | S | # High leverage (D/A ratio)Originally, SOEs earned huge profits \Rightarrow transferred to the state budget and allocated to other non-financial SOEs As reform closed down many SOEs / hindered their profitability, industrial finance became a problem **SOLUTION:** non-financial SOEs could easily get low-interest loans from banks (also SOEs) = Good solution to solve budgetary shortfall, high domestic household savings rates <u>However</u> – resulted in an <u>accumulation of NPLs – bank</u> <u>credits were granted to inefficient firms</u> and <u>credit risk was</u> <u>not properly managed by either party</u> (bank / SOE) stresses @ beginning of reform ### Dual-track system - Coexistence of a traditional plan + market channel for the allocation of goods - Two-tier pricing system for most goods - State-set planned price, and a market price - Applied to the <u>state sector and industrial</u> economy - All <u>factories</u>, including state-owned ones (<u>SOE's</u>), used a dual-track system in their introduction to the free market Figure 4.1 Steel production and planned allocation ## Specific (particularistic) contracts - Reformers signed individual <u>contracts</u> with every SOE, specifying - o <u>Tax payments</u> no regular tax system rates specific to individual enterprises - Contributions to the material-balance plan - Could tailor reform plans to individual companies to enable them to reform without suffering losses ### Market entry = only form of competition - Central government relaxed its monopoly over certain industries - Protected industrial sector effectively opened to new entrants (including TVEs) in 1979 - Significant increase in the number of market players → increased competition ### Pricing system - Flexible prices to match supply and demand - 1985 developments - o Market prices given legal sanction for sale of goods in excess of government "track" - Transactions between state and non-state sectors permitted - Simple trade now accompanied by various kinds of joint ventures and cooperative agreements # Incremental managerial reforms - Internal transitions that shifted management focus away from mere plan fulfilment → profitability - Alternative to privatisation adopting the free market mindset within a business still connected to the planned economy ### Disarticulation - Successive sections of the economy incrementally separated from the planned economy - E.g. rural reform first, then industrial - Major factor in reform success in the countryside - Policymakers realised it was not necessary for all the countryside to be integrated into the planned economy - Major example special economic zones - Export-oriented enclaves with (initially) almost no links to the rest of the economy ### Initial results Macroeconomic st.....see more when purchase notes;)