
### Lecture 8 Notes-Protocols & Firewalls

### **Protocols Outline**

- 1. Protocols
- 2. TLS / HTTPS
- 3. VPNs
- 4. Firewalls
- 5. Deep Packet Inspections, Intrusion Prevention

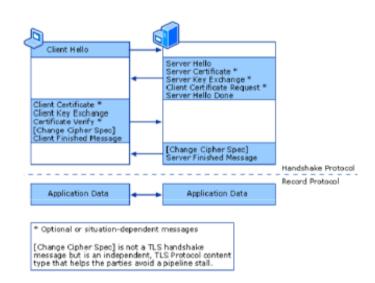
### Security Layer between HTTP and Transport Layer (TCP) - SSL/TLS

- Establishes a shared key to protect message confidentiality, integrity and authenticity
- main sub-protocols are TLS handshake to negotiate parameters, optional authentication, establish shared key
- and TLS record, the actual secure transport protocol
- Uses Diffie-Hellman key exchange to create shared secret
- 1. Alice and Bob agree on a base g and modulus n (these values are public)
- 2a. Alice generates random A and  $\alpha\text{=}g^A \; mod \; n$
- 2b. Bob generates a random B and  $b=g^B \mod n$
- 3. They exchange a and b
- 4. Shared key is  $K = b^A = g^{BA} \mod n = g^{AB} \mod n = g^B$



### **TLS Phases**

### 1. TLS Handshake


Can authenticate server and client. In HTTPS mostly only the server is authenticated. Results in a shared key and session ID or session ticket.

### 1. TLS Record

After the exchange of ChangeCipherSpec messages, all subsequent traffic is encrypted.

### 1. TLS Alert

Immediately closes a session



(Source: Microsoft)

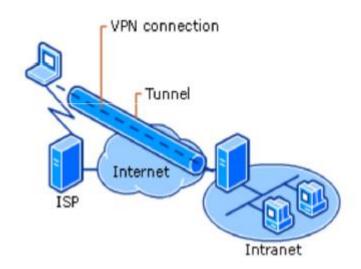
### **Authentication with certificates**

- A certificate provides additional information for a public key
- Owner of the matching private key
- Validity (exp date & time)
- Subject name
- Issuer name
- Other parameters

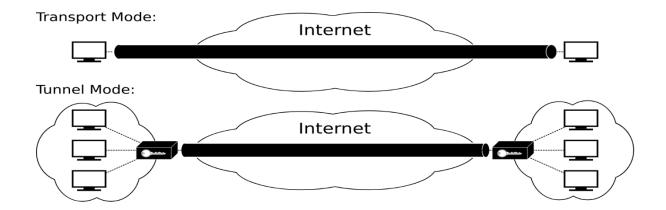
### **Trusted certificates**

- A certificate digitally signed by a known certification authority
- o Browsers come with a list of these authorities

### **Problems with certificate**


- Certificate revocation (certificate that has been revoked before its exp date due to violation of policy, private-key compromised, user no longer have private-key etc.)
- Relation between name and principal
- New policies are stricter making less efficient

# Virtual Private Network (VPN)


- Routes packets between different networks
- Tunnel established through TLS, IPSec
- Security only between tunnel endpoints

# IPSEC – A protocol suite on the level of IP packets:

 Can authenticate and encrypt data for each IP packet during transmission A VPN logically connects a client (or a network)
 to a network via an encrypted channel.



- Transport mode: Payload in IP packets is encrypted, integrity of header is protected. Used for end-to-end communication between two devices.
- Tunneling mode: Entire IP packet is encrypted and authenticated, encapsulated into a new IP packet and header. Used to create VPNs and host-to-host / network-to-network communication



### **IPSec Core Protocols**

**Authentication Header (AH)** – provides connectionless integrity by using a hash function and a secret shared key in the AH algorithm. Also guarantees data origin by authenticating IP packets.

**Encapsulating Security Payload (ESP)** – Provides confidentiality through encryption for IP packets, but can also provide origin authenticity, data integrity through hash functions, anti-replay and limited traffic flow integrity. Mostly uses AES

### **IPSec Authentication**

- Before AH or ESP can be used, keys need to be established (security association)
- o IKE internet key exchange is used
- IKE can use pre-shared keys or certificates

**Protecting Keys** – An alternative way to establish security associations

- Use a Trusted Platform Module TPM to generate and protect keys
- Provides a secure device identity
- o TLS and IKE can both use TPM-based authentication

### Firewall Outline

- 1. Firewalls
- 2. Network View on Firewalls Perimeter Protection
- 3. DMZ demilitarized zone
- 4. Next generation firewalls
- 5. Virus scanner

### Firewall

- A barrier between internal network and outside network
- Filters traffic using security rules that define what can go in and out

### Packet filter firewall

- Operates on Network layer (and above)
- Filters based on source and destination IP addresses, protocols, ports, current stage of a connection
- Static filtering rule set
- Standard security mechanisms and cost-effective

### How does it work?

- Firewall software inspects the first few bytes of TCP or UDP headers in an IP packet
- Finds application protocol and port (e.g. HTTP with port 80 or SMTP with port 25)
- Traffic from inside out is allowed (except when explicitly blocked)
- E.g. would block network management traffic (SNMP on UDP ports 161, 162)
- Traffic from outside in should be blocked if not explicitly permitted

### Which traffic should be permitted?

- Different rules for existing connections and new connections
- Depends on applications/services running behind the firewall

### Minimum information one needs to define:

- 1. Source IP address (or range)
- 2. Destination IP address (or range)
- 3. Destination port (or range)

### Source IP addresses examples:

- 1. Any address should be able to connect to a web server.
- 2. Management access should be restricted to specific IP addresses.

### <u>Destination IP addresses examples:</u>

- 1. IP address of the server running a service that should be accessed
- 2. Destination address needs to be defined
- 3. Never allow any IP address

### **Destination port examples:**

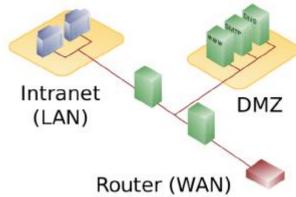
- 1. Specifies the service accessed via a particular port.
- 2. Example: A Web-server needs incoming connections on port 80 (HTTP) and port 443 (HTTPS).
- 3. Never allow any port

### Where to place a firewall

- o Firewall software on PCs is essential, but not sufficient
- o In a home network, the router usually also acts as firewall
- Proper placing is crucial for company network

### Even simple company network has:

- o An **internal network** with PCs, servers, printers, etc.
- Mail server, web-server, VPN gateway, etc.
- The internal network should not be directly accessible.
- o Web server or mail server needs to be accessible.


# Solution – **Demilitarized Zone** – DMZ

Create a zone that is considered less secure than the **internal network**, but still protected from outside access.

### Examples of filtering

- Prevent malicious software to send out data
- Block IP spoofing (technique used by attackers to impersonate another machine by manipulating IP packet header with a 'spoofed' source IP address.
- 3. Block outbound traffic from critical network areas or computers
- 4. Only allow outbound HTTP traffic through a proxy
- 5. Logging of denied outbound traffic
- Denied outbound traffic can help to detect infections,
   Any outbound connections that are not Web traffic would trigger a "deny" alert.

## DMZ with two firewalls



**Network address translation (**NAT) – a method of remapping one IP address space into another by modifying network address information in the IP packets of packets during transmission.

### Proxies and NAT:

### Firewalls also provide

- Network and port-address translation (NAT).
   Internal network uses internal IP addresses not visible to the outside
- o Proxies (e.g. for HTTP) can hide individual devices in the internal network

Not direct security functionalities but hide some information from outside attackers.

### Why firewalls are not enough

More and more applications connect internal networks to the internet:

- Social networks
- Remote access (TeamViewer)
- Unified messaging (Skype, WeChat)
- Collaboration tools (Googles Docs, OneNote, OneDrive, iCloud)

### More difficulties

- o Port hopping: Applications change their ports during a session
- Hiding in TPS encryption: TLS can mask application traffic
- Applications use non-standard ports
- Tunnel in other services: e.g. P2P file-sharing or messengers running over HTTP

### Perimeter security has obvious constraints

- Firewalls don't help against internal attackers
- Once an attack was successful, firewalls cannot help
- o Internet of things, mobile networks, etc.

# Skype Microsoft Office 365 YouTube Salesforce Zoho Gmail web browser GoToMyPC Google Apps Box Facebook Oracle CRM

### **Intrusion Detection System (IDS)**

- Monitors networks and/or system activities
- Alert when potentially malicious activity is found
- Logs information about activities

### **Intrusion Prevention System (IPS)**

- IDS with additional active functionality
- Attempts to block or stop malicious activities

### Monitoring actions (examples)

- Detect port scans
- Detect OS fingerprinting attempts (attacker analyzes protocols, data packets to attempt to detect what OS the device is on)
- Look for specific attacks (e.g. buffer overflow)
- o Find and block known malware
- Detect server message block (SMB) probes (exploit to protocol that provide shared access files, printers, serial ports)
- Find anomalies

### Reaction actions (examples)

- Drop malicious packets and send alarm
- Block traffic from some IP addresses
- Correct fragmentation in packet streams
- Raise alerts trigger human intervention/incident response teams

### 2 types of detections – IDS/IPS should have both

- Signature-based fast, generate less false positives, and do not need learning phase.
- Anomaly-based can detect unknown attacks

### **Next-Generation Firewalls (NGF)**

- Promise of an integrated security approach
- Proxy for all traffic (even encrypted)
- Look at everything (applications, logical segments, roles, services, users)

### Potential NGF problems

- Policy rules too complex
- Proxy for TLS breaks end-to-end security
- Encapsulated encryption still possible
- Privacy issues
- Single point of attack with full access to decrypted data

### Virus Scanner - Anti-virus Software

- Can efficiently prevent infections with known malware.
- Is the first thing to be manipulated by malware
- Unable to detect new malware