Pre-exercise Screening

	Pre-exercise screening		
Evidence	Evidence based system identifying + managing health risks for exercise. 3 stages		
Stage 1	Identify individuals w/ known diseases, signs/symptoms disease who may be at		
	risk adverse events during exercise. Self-administered questionnaire		
Stage 2	Administered by health professional, identifies individuals w/ risk factors/		
	conditions to assist correct exercise prescription . measures family history,		
	smoking status etc		
Stage 3	Administered by health professional, used to calculate risk factor, measures		
	things like BMI, BP etc		
Risk	Age, smoking status, family history, physical inactivity, other (BP, BMI,		
factors	cholesterol, blood sugar)		
	If overall score less 2= low risk= continue exercise		

Exercise intensity guidelines			
Intensity	HR	Perceived	Description
		exertion RPE	
Sedentary	<40% max	RPE <1	Sitting/lying, little movement
Light	40 <55% max	RPE 1-2	Aerobic activity causing no change
			breathing rate, intensity sustain 60 min
Moderate	55 < 70% max	RPE 3-4	Aerobic activity has convo without un-
			interruption, intensity between 30-60 min
Vigorous	70 < 90% max	RPE 5-6	Aerobic activity convo cannot be
			maintained, intensity sustained up to 30
			min
High	> 90%	RPE > 7	Intensity cannot be maintained longer
	max		than 10 minutes

Skeletal muscle: structure and function

Functions	Force production for movement+ breathing + postural support.
	Heat production, endocrine role
Connective	Epimysium: surrounds entire muscle
tissue	Perimysium: surrounds bundles of muscle fibers
	Endomysium: surrounds individual muscle fibers
	Sarcolemma: muscle cell membrane
Satellite	role muscle growth + repair (increase # nuclei in damaged fiber). More
cells	nuceli= bigger size= hypertrophy

Microstructure skeletal muscle		
Muscle fiber Long cylindrical cell containing sarcoplasm, myofibrils		
Z disc	Anchor thin filaments, separate one sarcomere from next	

a-band	Thick filaments
I band	Made actin, z line passes through middle
M line	Protein structure holds thick filaments together at centre sarcomere

Neuromuscular junction		
Gap between motor neuron + muscle fiber, site where actin + myosin interaction occurs		
Sarcoplasmic reticulum + transverse tubules		
SR houses calcium + transverse tubules= tubes allow travelling AP to contract/relax muscle fibers		

Sliding filament model

Muscle shortening= movement actin filament over myosin forming cross bridges between the 2 filaments= reduces distance between z-lines of sarcomere

Relationship between troponin, tropomyosin, myosin and calcium

Calcium= needed to bind + move troponin away from myosin

Hydrogen ions can impede calcium binding process by competing for site of binding= myosin can't attach = loss of power/no contraction

Energy for muscle contraction

ATP required for muscles to contract, myosin ATPase breaks down ATP as fibers contract producing ADP + phosphate

Sources ATP for contraction

Phosphocreatine (stored muscle), glycolysis (breakdown glycogen stored in liver), oxidative phosphorylation (breakdown carbs fats proteins).

Muscle excitation, contraction and relaxation		
Excitation	Nerve impulse arrives NMJ travels down transverse tubules to SR	
Contraction	AP reaches SR, calcium is released + diffuses into troponin	
	Tropomyosin removed from active sites on actin, cross bridge of myosin +	
	actin formed	
Relaxation	Absences nerve impulse NMJ= ca2+ pump removes calcium back to SR=	
	tropomyosin moves and covers actin, cross bridge formation ceases	

Muscle fatigue

Decline in power output.

At high intensity= accumulation hydrogen ions= diminished corss bridges= cannot maintain power output

Low intensity/long durations= accumulation free radicaled, electrolyte imbalances, glycogen depletion

Exercise related muscle cramps

Spasmodic involuntary contractions. 2 possible causes:

Electrolyte depletion

Neuromuscular control theory= afferent signals do not come back to tell muscles to relax= continuous contractions= spasms

Characteristics muscle fibers			
Biomechai	nical Oxidative capacity= # capillaries surrounding muscle fibre, #		
properties	: mitochondria, # myoglobin		
	Type myosin ATPase= regulates speed of ATP degeneration i.e. type 1=		
	break down is dlow		
Contractile	Maximal force production, speed of contraction, muscle fiber efficiency		
properties	:		
How are skeletal muscle fibers typed			
Muscle bio	Muscle biopsy:		
Small piece	Small piece tissue removed, then is stained for type of myosin ATPase (T1= darkest		
colour).			
Characteristics individual fibers			
Shifts in fib	Shifts in fiber type may occur, resistance training increase amount Type 2 X and reduce		
type 1. Detraining can reduce % type 1			
Type 1	Slow twitch, slow oxidative		
Type 2 A	Intermediate fibers, fast-oxidative glycolytic fibers		
Type 2 X	Fast twitch, fast glycolytic fibers		

Muscle actions		
Isometric	Isometric Exerting force withour chaning muscle length	
Isotonic		
Concentric	Shortening of muscle (bicep in bicep curl)	
Eccentric	Lengthening of muscle during movement (tricep in bicep curl)	

Speed of muscle actions		
Twitch	Single stimulus, time phases vary among people	
Latent	1 st stage, lasts approx 5ms	
period		
Contraction	2 nd phase, lasts 40ms	
Relaxation	Final phase, lasts 50ms	
Speed shortening greater in fast fibers= SR releases Ca++ at faster rate + highers ATPase		
activity in comparison		

Force regulation in muscle		
#/type motor units	More units recruited- greater force. Fast fibers exert greater	
	specific force then slow	
Initial length	Ideal length for force, 60% lengthening greater force then 100%	
	stretched	
Natural stimulation	3 stimulations: simple, summation and tetanus	
	Simple= first few contractions	
	Summation= increase neural stimulation decreasing relaxation	
	period	
	Tetanus= further increase stimuli, individual contractions blended	
	into 1 sustained contraction	

Contractile history	If muscle first performs bouts of fatiguing movements=	
	subsequent muscle force decreased	

Force-velocity relationship

Force exerted by muscle, velocity is greater in muscle containing higher % fast fibers

Force power relationship

Peak power generated greater in muscle that contains high % fast fibers. Increases with velocities of movement up to 200-300 degrees/ second

Diseases + ageing on muscle function

Aging associated w/ muscle loss + mass. Aging also results loss fast fibers, they take on type 1 characteristics instead

Diabetes, cancer, muscular dystrophy all related with decrease muscle mass