RSC301 – Asthma Management

Contents

SC301 – Asthma Management	1
Previous expected knowledge:	1
Module 1	3
Topic 1: Pathogenesis	3
Topic 2: Prevalence and Mortality	4
Topic 3: Asthma Prevention and Triggers	6
Module 2	8
Topic 1: Pharmacotherapy	8
Topic 2: Management strategies in adults	12
Topic 3: Adherence and self-management	16
Topic 4: Clinical issues	18
Module 3	20
Topic 1: Paediatric Asthma	20
Topic 2: Adolescent and Young Adults	22
Topic 3: Pregnancy	23
Topic 4: Elderly	23
Topic 5: Aboriginal and Torres Strait Islanders	24

Previous expected knowledge:

Respiratory anatomy and physiology:

- The lungs sit within a pleural cavity
- Chest expands, pressure within the pleural cavity is lowered, and air moves in via the trachea and bronchi
- Breathing is controlled by the respiratory centre in the medulla, and muscles innervated include:
 - o Diaphragm
 - o Intercostal muscles
- During heavy breathing, the pectorals muscles, sternocleidomastoid muscles and scalenes may be used to provide further expansion of the thoracic cavity
- Normal lung function varies between people
 - o dependent on age, sex, height, weight, race
 - o plateau in lung function 20-30 years of age, then steady decline
 - FEV1 (volume of air forcefully breathed out in one second from inhaling to maximal capacity) declines about 30-35mL per year.
 - o Smokers decline 100mL per year

Lung volumes

- Forced vital capacity (FVC) total amount of air that can be forcefully inhaled and exhales
- FEV1 forced expiratory ratio of air in one second from FVC
- FEV1:FVC ratio normally more that 0.8 (i.e. 80% breathed out in the first second of forced exhalation)
- o Respiratory rate breaths per minute
- o Tidal volume volume of air in a normal breath (normally about 500mL)

- Spirometry involves a patient breathing in as much air as they can (to forced vital capacity), then forcefully exhaling and breathing out all the air they can as fast as possible.
- Asthma is a chronic inflammatory response in the airways
 - wheezing, cough, dyspnoea, tight chest, tachycardia, fatigue, anxiety, difficulty speaking
 - o often reversible
 - short-term changes:
 - bronchoconstriction due to histamine, IL-4, IL-5, IL-13 and other inflammatory mediators – increase airway resistance, harder to get air in
 - excessive mucus production leads to mucus plugs
 - airway inflammation and oedema
 - long-term changes:
 - remodelling of lung tissue
 - thickening and fibrosing of basement membrane
 - hyperplasia of mucus glands

COPD

- o emphysema → enlargement of airspaces and destruction of lung tissue
- o chronic obstructive bronchitis → obstruction of the small airways
- bronchiectasis → permanent dilation of the airways resulting from destruction of smooth muscle following prolonged infection and inflammation (more dead space, less air for gas exchange)

Module 1

Topic 1: Pathogenesis

Airway inflammation and hyperactive airway musculature narrowing bronchioles to result in a flow obstruction

- Not in all grades of asthma
- Airway inflammation leads to muscular hyperactivity
 - o Muscle contracts, constricting airways, bronchoconstriction
- Mediators involved include histamine, thromboxane and leukotrienes
- Chronic inflammation of airways results in permanent changes

Allergic response

- Due to inhaled allergenic particles in the nose, bronchi or bronchioles
- Immune system cells (mast cells, eosinophils, basophils, and neutrophils) release cellular mediators (histamine, leukotrienes, other mediators)
- Response is beneficial in the short term

- In asthmatic individuals, inflammatory response is via the Th2 pathway (T-helper cell 2)
- Inflammation leads to redness and oedema, and desquamation of airway epithelium
 - Airway lining sheds off

Asthma response pathway

Allergen lands on airway mucosa

Digested by allergen-presenting cell (APC) or dendrite (immune cell, not the part of the neuron)

Cells migrate to the lymph nodes and present the degraded allergen to T-cells

T-cells prime B-cells to produce allergen-specific antibodies which bind to mast cells

Mast cell releases histamine, attracting eosinophils to the site

T-cells proliferate and release cytokines (IL-4 and IL-5)

Allergic and non-allergic responses:

- Allergic individuals produce more IgE (the allergy immunoglobulin)
- Non-allergic individuals produce more IgG (the standard immunoglobulin)
- Allergic individuals produce more IL-4 and IL-5 (Th2 pathway)
- Non-allergic individuals produce more INF-y
 - INF-γ inhibits IL-4 and IL-5

IL-4 and IL-5

- Interleukin-4 and interleukin-5
- IL-4 is involved in stimulating production of Th2 cells from precursor Th0 cells
- IL-4 also promotes inflammation of tissues by activating macrophages
- IL-4 also promotes switching of immunoglobulin class to IgE (allergic response)