Week 3

Definitions

- Central Tendency the extent to which all data group around a central value
- Variation The level of dispersion of data around the central value
- Shape The pattern of distribution of data from lowest to highest

Measures Of Central Tendency

Arithmetic Mean (x)

- Sum of all values, divided by the number of values
- Impacted by extreme values

Median

- Middle number of an ordered array
- Not impacted by extreme values ('resistant measure')
- If odd number of values, median is simply the middle value
- If even number of values, median is the mean of the middle two values

Mode

- Value which occurs must frequently
- Not impacted by extreme values
- Not very useful for continuous data as unlikely to have equal values
- Possible for there to be no mode or multiple modes

Geometric Mean (XG)

• Measures the rate of change of a variable over time

$$\mathbf{X}_{G} = (\mathbf{X}_{1} \times \mathbf{X}_{2} \times \cdots \times \mathbf{X}_{n})^{1/n}$$

Geometric Rate Of Return (R _G)

Measures average rates of return over time

$$\overline{R}_{G} = [(1+R_{1})\times(1+R_{2})\times\cdots\times(1+R_{n})]^{1/n}-1$$

• Where R_i = rate of return for period i

Measures Of Variation

Range

- Difference between minimum and maximum values
- Simplest measure of variation
- Highly sensitive to extreme values

Sample Variance (S2)

- Sum of the differences between each value and the mean, divided by the number of values 1
- Why n-1? If you have n values, you only have n-1 gaps between those values

$$S^2 = \frac{\sum_{i=1}^n (X_i - \overline{X})^2}{n-1}$$

X_i = ith value of the variable X

Sample Standard Deviation (S)

- Shows variation about the mean
- Square root of variance
- Has same units as data

$$S = \sqrt{\frac{\sum_{i=1}^{n} (X_i - \overline{X})^2}{n-1}}$$
 Where

X = arithmetic mean

X_i = ith value of the variable X

Coefficient Of Variation

- Measures variation relative to the mean
- Useful in comparing variations between data sets
- Expressed as a percentage

$$CV = \left(\frac{S}{\overline{X}}\right) \cdot 100\%$$

Measures Of Shape

Skewness

• Measures the level of asymmetry in a distribution

- Skewness of 0 means perfectly symmetrical
- Left Skewed: Median > Mean (Skewness <0)
- Right Skewed: Mean > Median (Skewness >0)

Kurtosis

Measures extent of central tendency

Kurtosis of 0 means bell shaped

• Lepokurtic: Sharp peak (kurtosis >0)

More values in tails

Platykurtic: Flat peak (kurtosis <0)

Less values in tails

Assessing Extreme Values – Z Scores

• A Z-Score describes how many standard deviations a value lies from the mean

• Larger Z-Scores indicate a larger distance from the mean, >3 considered an outlier

$$Z = \frac{X - \overline{X}}{S}$$

where X represents the data value

X is the sample mean

S is the sample standard deviation

Quartiles

• Splits ranked data into 4 segments, with an equal number of values per segment

• $Q_i = i(n+1)/4$ where i is the quartile (1, 2 or 3)

- o If a whole number, simply use this ranked value
- o If a fractional half, average the two corresponding values
- If neither of the above, round to nearest whole

• Q₂ is simply the median, with Q₁ and Q₃ being the median between Q₂ and the min/max

Interquartile Range

• Measures the spread of the middle 50% of the data (no indication of tails)

Simply Q₃ − Q₁

Five Number Summary

Five values describing the center, spread, shape and data:

- o Minimum
- First Quartile (Q₁)
- Median (Q₂)
- Third Quartile (Q₃)
- Maximum
- Easily communicated using a boxplot

Descriptive Statistics For Populations

Called parameters

Population Mean (μ)

• Sum of all the values in the population divided by population size

Population Variance (σ²)

$$\sigma^2 = \frac{\sum_{i=1}^{N} (X_i - \mu)^2}{N}$$

Where µ = population mean

N = population size

 $X_i = i^{th}$ value of the variable X

Population Standard Deviation (σ)

$$\sigma = \sqrt{\frac{\sum_{i=1}^{N} (X_i - \mu)^2}{N}}$$

Where μ = population mean

N = population size

 $X_i = i^{th}$ value of the variable X

The Empirical Rule

- Approximates the distribution of data in a bell curve only works for populations
- Approximately 68% of the data in a bell curve lies within one standard deviation of the mean
- Approximately 95% of the data in a bell curve lies within two standard deviations of the mean
- Approximately 99.7% of the data in a bell curve lies within three standard deviations of the mean

Chebyshev's Rule

 Regardless of data distribution, Chebyshev's rule estimates the percentage of data within k standard deviations

$$\left(1 - \frac{1}{k^2}\right) \times 100\%, \ k > 1$$

Covariance – WEEK 4