

Comparing SD Line and Regression Line

- Cannot interchange variables like the SD Line

Feature	SD Line	Regression Line
Connects	(\bar{x}, \bar{y}) to $\left(\bar{x}+\mathrm{SD}_{x}, \bar{y}+\mathrm{SD}_{y}\right)$	(\bar{x}, \bar{y}) to $\left(\bar{x}+\mathrm{SD}_{x}, \bar{y}+r \mathrm{SD}_{y}\right)$
Slope (b)	$\frac{\mathrm{SD}_{y}}{\mathrm{SD}_{x}}$	$r \frac{\mathrm{SD}_{y}}{\mathrm{SD}_{x}}$

Graph of averages

The graph of averages plots the average y for each x.

- The regression line is a smoothed version of the graph of averages.
- If the graph of averages is a smooth line, that line is the regression line.

Predictions

1. Baseline predication

Given a certain value x, a basic prediction of y would be the average of y over all the x values in the data.

2. Prediction in a strip

- Given a certain value x, a more careful prediction of y would be the average of all the y values in the data corresponding to that x value.
- We use the graph of averages.

Area under a General Normal Curve

- Lower tail: pnorm(x , mean, sd) Upper tail: pnorm(x , mean, sd , lower.tail = F)

Height of Australian women in cms (x)

```
pnorm(171, 161.9, 7.7) #pnorm(x,mean,sd)
```


Special Properties of Normal Curve

1. All Normal curves satisfy the " $68 \%-95 \%-99.7 \%$ Rule

- The area 1 SD out from the mean in both directions is 0.68 (68\%).
- The area 2 SDs out from the mean in both directions is $0.95(95 \%)$.
- The area 3 SDs out from the mean in both directions is 0.997 (99.7%)

1,2 and 3 SDs from mean: $N(0,1)$

2. Any General Normal can be rescaled into the Standard Normal

- Change to standard units/z score

Here the point $=8$.
So the z score is $\frac{8-5}{3}=1$.

