Neural and Linguistic Development

Describe the stages of brain development

Understanding how the brain develops allows:

- Understanding the parts of the brain and how they fit together
- Development of a greater understanding of cognitive neurological impairments in the early stages of development
- Understanding why and how things can go wrong with early neural development

Neural Development

Undergo 3 embryonic stages

- Pre-embryonic (zygote)
 - o Conception to 2 weeks
- Embryonic (embryo)
 - o End of week 2-8
- Fetal (foetus)
 - o 8-birth

Pre-embryonic Stage

- Ovum begins cell division
- Becomes a blastocyst due to repeated cell division
- Outer layer will become placenta
- Innermass will become embryo; ectoderm, endoderm, mesoderm

Embryonic Stage

- Organs are formed
- Ectoderm develops into sensory organs, epidermis, nervous system
- Mesoderm develops into the dermis, muscle, skeleton, excretory and circulatory systems
- Endoderm becomes gut, liver, pancreas, respiratory system

Fetal stage

• Nervous system develops more fully and myelination of neurons begins

Formation of the Nervous System

Stages of neural development:

Neural tube formation - Day 8-26

Brain formation - begins during week 4

Neural Tube Formation

- Begins as longitudinal thickening of ectoderm
 - o Neural plate forms on the surface of the embryo, extends from the head to tail region

- Edges of the plate start to fold; forms the neural groove
- Folds eventually touch around day 22; forms the neural tube
- Cells next to the tube separate, remaining ectoderm forms the neural crest
 - Cranial nerves, spinal nerves (PNS)
- Day 26 tube differentiates into 2 rings:
 - o Mantle layer (inner wall becomes grey matter)
 - o Marginal layer (outer wall becomes white matter; axons and glial cells)

The Ventricular System

- Derived from the neural canal (centre of the nerual tube)
- Filled with CSF

The Ventricular System of the Human Brain

Timing of Development

First 8 weeks

- If something goes wrong may result in defectively designed structure/system
 - o Teratogenesis congenital malformations in embryo/foetus
 - Earlier teratogenesis = major congenital defects
 - Later teragonesis = minor defects, functional malformation
- Problem occur after 8th week = failure of growth, development, or refinement of the structure of system

Examples:

Neural tube defects

- Involve the incomplete development of the neural tube
- Occur between the 17-30th day after conception (critical period)

- o Occurs in 4.6/10 000 births
- Related to folic acid deficiency, genetics, maternal diabetes, socioeconomic status

Cerebral palsy

- Covers a variety of non-progressive disorders; characterised by impairment in voluntary movement
- Results from maldevelopment of brain, brain damage prenatally, during birth, shortly after birth
 - o Occurs in the developing brain
- Pre-term, low birth weight at higher risk
- Caused by lack of oxygen, infection, impaired rate of growth during pregnancy/early years of life

Cellular level development

- Lifelong trajectory
- Progressive developmental processes balanced by regressive processes that remodel the nervous system during development
 - Progressive processes cell proliferation, migration and growth, extension of axons to target cells, formation of synapses, myelination of axons
- Epithelial cells lining the neural tube divide to produce neurons and glia
 - o Glia support cells, nourish neurons, collect wastes etc

Explore the neurobiology of brain development

Stages of Brain Development

1. Cell birth

Neurogenesis, gliogenesis

- 2. Cell migration
- 3. Cell differentiation
- 4. Cell maturation

Dendrite and axon growth (continues to age 4)

5. Synaptogenesis

Formation of synapses

- 6. Cell death and synaptic pruning
- 7. Myelogenesis

Formation of myelin

Neurolinguistic development

Locke's Theory of Neurolinguistic Development

- Language learning begins with processes that orient the child to behaviours of people talking; attend to and respond to certain aspects of behaviour
- Responsiveness to facial and vocal activity presumed to be heavily influenced by genetic factors, early experience, supported by specific neural pre-adaptions
- Each phase occurs in a fixed and overlapping sequence, commitment of neural resources

Theory Overview

Age of Onset	Phases and Systems	Neurocognitive Mechanisms	Linguistic Domain
Prenatal	Vocal learning	Social cognition	Prosody and sound segments
5-7 months	Utterance acquisition	Social cognition	Stereotyped utterances
20-37 months	Analysis and computation	Grammatical analysis	Morphology, syntax and phonology
3+ years	Integration and elaboration	Social cognition and grammatical analysis	Expanded lexicon and automated operation

Phase 1 - Vocal Learning

- Strongly oriented to the human face and voice
- Neural mechanisms dedicated to processing faces and facial activity
 - o Specialisation in social cognition; orients infants to communication
- Heavy genetic influence
- Social-cognitive operations contribute to initial phases of language learning
 - o Right hemisphere
 - Social/cognitive precursors for linguistic capacity
 - Become acquainted with vocal cues;
 - Identify people and emotions
 - Regulate social behaviour
 - Characterise their native language

Phase 2 - Utterance Acquisition

- Rote learning storage of utterances
- Begin to use formulaic phrases; mimic length, stress pattern, intonation
- Uses correct forms of syntax that may develop later, don't occur elsewhere in their speech
- Provides a sequence of starter phrases used appropriately in specific context
 - Able to speak, regarded as 'talkers'; can't achieve large lexicon, develop language proficiency and flexibility
- First words are formulaic and stored in prosodic type memory
- Right hemisphere emotional/social
- Storage limitations
- LH not involved