ECOM20001 Econometrics

Lecture	Page
Lecture Note 2: Probability	2
Lecture Note 3: Statistics	6
Lecture Note 4: Single Linear Regression Estimation	8
Lecture Note 5: Single Linear Regression Testing	10
Lecture Note 6: Multiple Linear Regression Estimation	11
Lecture Note 7: Multiple Linear Regression Testing	13
Lecture Note 8: Nonlinear Regression	17
Lecture Note 9: Time Series Regression	22

Lecture Note 2: Probability

One Random Variable

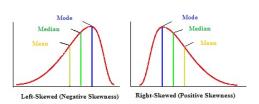
- Random processes and probabilities
- Discrete and continuous random variables
- Probability density functions
- Cumulative density functions
- Describing distributions: mean, variance, skewness, kurtosis

Random processes: flipping a coin, rolling a 6-sided dice

Discrete: discrete set of values (eg flipping a coin)

Continuous: continuum of values (eg household income)

Probability distribution: $P(a \le X \le b)$



	Discrete Outcome: Number of Pokies Venues in an LGA									
	1	2	3	4	5	6	7	8	9	10+
Probability Distribution	10.3	7.4	10.3	13.2	4.4	4.4	5.9	7.3	1.5	35.3
Cumulative Probability										
Distribution	10.3	17.7	28.0	41.2	45.6	50.0	55.9	63.2	64.7	100.0

Cumulative distribution: $P(X \le b)$

$$\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n}$$

Rules with summation operators:

$$\sum_{i=1}^{n} ax_{i} = a \sum_{i=1}^{n} x_{i} \qquad \sum_{i=1}^{n} a = n \times a \qquad \sum_{i=1}^{n} (x_{i} + y_{i}) = \sum_{i=1}^{n} x_{i} + \sum_{i=1}^{n} y_{i}$$

E(X) discrete

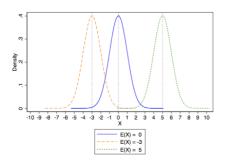
$$E(X) = \mu_X = p_1x_1 + p_2x_2 + \ldots + p_nx_n = \sum_{i=1}^n p_ix_i$$

E(X) continuous

$$E(X) = \mu_X = \int_{x_{min}}^{x_{max}} x f(x) dx$$

Rules with E(X)

$$E(aX + b) = aE(X) + b$$



Variance & Standard Deviation:

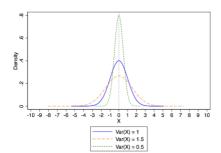
Measures the dispersion or how spread out probability distribution is

Var(X) continuous

$$var(X) = \sigma_X^2 = E[(X - \mu_X)^2] = E(X^2) - \mu_X^2$$

std(X) continuous

$$std(X) = \sigma_X = \sqrt{(\sigma_X^2)}$$



Mean of Linear Function of Random Variable

$$Y = 6 - 1.5X$$

$$E(Y) = E(6-1.5X) = E(6) - 1.5E(X)$$

$$\mu_{Y} = 6 - 1.5 \, \mu_{X}$$

Variance of Linear Function of Random Variable

$$\sigma_Y^2 = E[(Y - \mu_Y)^2)]$$

$$= E[(\underbrace{(6 - 1.5X)}_{Y} - \underbrace{(6 - 1.5\mu_X)}_{\mu_Y})^2]$$

$$= E[(-1.5(X - \mu_X))^2]$$

$$= 2.25E[(X - \mu_X)^2]$$

$$= 2.25\sigma_X^2$$

► In general, if random variables X and Y are linearly related according to constants a (intercept) and b (slope):

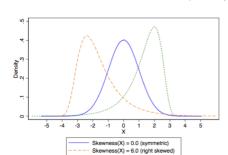
$$Y = a + bX$$

then the means are related as follows:

$$\mu_Y = a + b\mu_X$$

and the variances are related as follows:

$$\sigma_Y^2 = b^2 \sigma_X^2$$

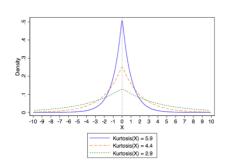


Skewness: symmetry in distribution

Skewness =
$$\frac{E[(Y - \mu_Y)^3]}{\sigma_Y^3}$$

<u>Kurtosis</u>: how much <u>dispersion</u> of distribution is <u>in its</u> tails (tell us something about how much variability of a random variable is driven by more extreme values relative to the mean)

$$\mathsf{Kurtosis} = \frac{E[(Y - \mu_Y)^4]}{\sigma_Y^4}$$



larger value = more infrequent extreme deviations

Two Random Variables

- Joint, marginal, and conditional distributions
- Covariance, correlation, and independence

Joint: P(X = x, Y = y)

	Rain (X=0)	No Rain (X=1)	Total
Long Commute (Y=0) Short Commute (Y=1)	0.15 0.15	0.07 0.63	0.22 0.78
Total	0.30	0.70	1.00

Marginal:

$$P(Y = y) = \sum_{i=1}^{K} P(X = x_i, Y = y)$$

	Rain (X=0)	No Rain ($X=1$)	Total
Long Commute (Y=0)	0.15	0.07	0.22
Short Commute (Y=1)	0.15	0.63	0.78
Total	0.30	0.70	1.00

Conditional:

$$P(Y = y | X = x) = \frac{P(X = x, Y = y)}{P(X = x)}$$

	Rain (<i>X</i> =0)	No Rain (X=1)	Total
Long Commute (Y=0)	0.15	0.07	0.22
Short Commute (Y=1)	0.15	0.63	0.78
Total	0.30	0.70	1.00

Covariance: extent to which 2 random variables X and Y move together

$$cov(X, Y) = \sigma_{XY} = E[(X - \mu_x)(Y - \mu_Y)]$$

(+): X and Y move together (-): opposite directions