2. FINANCIAL MATHEMATICS

Multiple future cash flows

Value Additivity: cash today cannot simply be added to cash tomorrow as CFs occur at different times

- Mixed stream - irregular (unstable) cash flows
- Therefore, you must convert multiple CFs into a single equivalent cash flow (CFs should be carried forward, accumulated, or back in time, discounted)

Future Value of a Mixed Stream

The approach to calculating the FV of a known mixed stream involves a 2 step process and requires value additivity

1. Calculate the FV of each future amount to be received at a comparable point in time
2. Sum all future values at a comparable point in time together to determine the future value of the known mixed stream
```
EXAMPLE: You deposit $1000 now, $1500 in 1 year, $2000 in 2 years and $2500 in 3 years in an
account 10% interest per annum. How much do you have in the account at the end of the 3 'rd year?
```


Present value of a Mixed Stream

Calculating PV also requires value additivity

1. Calculate the PV of each future amount to be received at a comparable point (normally $\mathrm{t}=0$)
2. Sum all PVs at a comparable point in time to determine the PV of the known mixed stream
[^0]
Perpetuities

Perpetuity: a cash flow stream of equal amounts, equally spaced in time (fixed regular payment, received at fixed points in time forever)

- NOTE: as the formula calculates PV at year 0 , if there is a CF in year 0 , add it onto the figure found using the formula

$$
\begin{aligned}
& \text { where } \quad C F=\text { the cash flow per period (i.e. the payment), } \\
& i=\text { the interest rate per period. }
\end{aligned}
$$

Note: The formula values cash flows ONE period BEFORE the first cash flow

EXAMPLE: government security promises to pay $\$ 3$ pa forever. If the interest rate is 10% pa and a payment of $\$ 3$ has just been made, how much is the security worth?

$$
\begin{gathered}
\mathrm{C}=\$ 3, \mathrm{i}=10 \% \\
\mathrm{PV}=\frac{C F}{i}=\frac{3}{0.1}=\$ 30
\end{gathered}
$$

Note: as the $\$ 3$ has already been made, it is disregarded, and not included

EXAMPLE: government security promises to pay $\$ 3$ pa forever. If the interest rate is 10% pa and a payment of $\$ 3$ is made tomorrow, how much is the security worth?

$$
\begin{aligned}
\mathrm{PV} & =\frac{C F}{i}+C \\
& =\frac{3}{0.1}+3=\$ 33.00
\end{aligned}
$$

Note: as the $\$ 3$ is made in year 0 , it needs to be added to the calculation

EXAMPLE: Earn $\$ 500$ per year forever, with the first payment two years from today.
$P V=\frac{\mathrm{C} / \mathrm{i}}{1+\mathrm{i}}=\frac{\$ 500 / 0.08}{1.08}=\$ 5,787.04$
Timeline

$\mathrm{T}=0$	$\mathrm{~T}=1$	$\mathrm{~T}=2$	$\mathrm{~T}=3$	$\mathrm{~T}=4$ etc.	
$\$ 0$	$\$ 0$	$\$ 500$	$\$ 500$	$\$ 500$	etc.

The first CF is in year 2 - so the perpetuity formula will give the PV of year 1. This PV must be discounted back to year 0 using the simple PV formula.
$P V=\frac{C F}{i} \quad$ then $P V=\frac{F V}{(1+i)^{n}}$

EXAMPLE: $\$ 2420$ per year forever, with the first payment 3 years from today.

$$
\begin{aligned}
& P V=\frac{\mathrm{C} / \mathrm{i}}{(1+\mathrm{i})^{2}}=\frac{\$ 2,420 / 0.08}{1.08^{2}}=\$ 25,934.50 \\
& \text { Timeline } \\
& \mathrm{T}=0 \quad \mathrm{~T}=1 \quad \mathrm{~T}=2 \\
& \mathrm{~T}=3
\end{aligned}
$$

NOTE: Perpetuity Due $\rightarrow \quad P V=P M T+\frac{P M T}{i}$
2. Level of coupon \rightarrow the lower the coupon rate, the greater the effect of the new interest rate through compounding (lower coupon bonds more price sensitive; firm pays you less so less immune to changes in the economy)

3. Default risk \rightarrow as default risk rises, the value of a bond will fall

- Risk for investors that the bond issuer may default on the bond's cash flow (coupon payments, repayment of bond at maturity)
- The financial health of a company is assessed to determine the chance of defaulting \rightarrow these assessments are summarised by credit ratings, which are provided by rating agencies such as S\&P and Moody's
- The higher the market's assessment of the probability of default, the higher the requires rate of return on the debt

Shares

Equity securities are a company's certificates of ownership.

- More than $\$ 1.14$ trillion worth of public equity securities were outstanding in Australia in March $2010-44 \%$ of the adult population either own shares directly or indirectly (superannuation)
- Outstanding shares of a company are bought and sold among investors in the secondary market
- Active secondary markets enable companies to sell their new debt/equity issues at lower funding costs \& also provide investors with fairly priced shares

Share valuation

Value of share $=\boldsymbol{P V}$ of future cash flows (but more complex due to uncertainty of CFs \& no maturity)

- Expected cash flows received from a share are all future dividends (consider dividend growth!)

Two approaches to share valuation - dividend valuation \& earnings per share (EPS):

- Valuation based on dividends = dividends are discounted to a present value for share valuation
- Valuation based on earnings (EPS) = earnings are capitalised into a share value using a priceearnings ratio

1) CONSTANT DIVIDEND VALUATION

The constant dividend assumption is the simplest - this is where dividends are constant (ie preference share) so the perpetuity formula can be applied \rightarrow typically undertaken by mature firms who have constant profits

$$
P_{0}=\frac{D}{R}
$$

EXAMPLE: Worley Ltd is expected to pay a constant annual dividend of \$2.50 per share indefinitely. If the discount rate is 8% what is the share value?

$$
P_{0}=\frac{D}{R}=\frac{2.50}{0.08}=\$ 31.25
$$

2) CONSTANT DIVIDEND GROWTH VALUATION

This is where dividends are expected to grow at a constant rate indefinitely (more realistic) \rightarrow typically younger firms who are experiencing growth

$$
P_{0}=\frac{D_{0}(1+g)}{(R-g)}
$$

where $g=$ expected growth rate in dividend per share

EXAMPLE: Coco Ltd has just paid an annual dividend of $\$ 0.30$ per share which will grow at 5% indefinitely. RRoR is 8%, find share value

$$
P_{0}=\frac{D_{0}(1+g)}{(R-g)}=\frac{0.30(1+0.05)}{(0.08-0.05)}=\$ 10.50
$$

[Note: D_{0} is current dividends; if dividends are to be paid in 1 year, then don't use $D_{0}(1+g)$, just use \boldsymbol{D}_{1}]

3) VARIABLE DIVIDEND GROWTH VALUATION

This allows for different growth rates - dividends may grow at a high rate for a number of years, but not indefinitely (this valuation assumes dividends will grow constantly, some time in the future)

EXAMPLE: Dave Ltd just paid a $\$ 0.50$ annual dividend. The RRoR on Dave's shares is 10%. Exceptional growth is forecasted for Dave Ltd for the next 3 years at 12% pa. After year 3, growth rate (g) will settle at 5% indefinitely. What is the value of Dave Ltd shares today?

$$
\begin{aligned}
P_{0} & =\frac{D_{0}\left(1+g^{\prime}\right)}{(1+R)}+\frac{D_{0}\left(1+g^{\prime}\right)^{2}}{(1+R)^{2}}+\frac{D_{0}\left(1+g^{\prime}\right)^{3}}{(1+R)^{3}} \\
& +\frac{1}{(1+R)^{3}} \times \frac{D_{0}\left(1+g^{\prime}\right)^{3}(1+g)}{(R-g)}
\end{aligned}
$$

The first three terms account for the higher 12% growth (first three dividends), while the fourth term accounts for the all dividends thereafter (lower 5\% growth).

$$
\begin{aligned}
P_{0} & =\frac{\$ 0.50(1.12)}{1.10}+\frac{\$ 0.50(1.12)^{2}}{(1.10)^{2}}+\frac{\$ 0.50(1.12)^{3}}{(1.10)^{3}} \\
& +\frac{1}{(1.10)^{3}} \frac{\$ 0.50(1.12)^{3} 1.05}{(0.10-0.05)} \\
& =\$ 12.64
\end{aligned}
$$

The value of Dave Ltd's shares is $\$ 12.64$

Note: $1 /(1+R) 3$ discounts the dividends from year 3 onwards, as the PV found for those is PV3

Constant chain of replacement

To compare projects with different lives, we replicate mutually exclusively projects over time
The replacement chains are continued until both chains are of equal length
Two methods:

- Lowest common multiple
- Perpetuity method
[1] Lowest common multiple
- if Machine A has a life of 5 years and B has a life of 3 years, the lowest common multiple is $\mathbf{1 5}$ yrs
- Machine A is replicated 3 times and machine B is replicated 5 times - the PV of the costs of both machines over $15 y$ rs are then compared
[2] Perpetuity method
- Both projects are replicated forever - the chains are then "equally lengthy" as both are infinite
- Is easier to use

$$
\begin{aligned}
\mathrm{NPV} & =N P V+\frac{N P V}{(1+k)^{t}}+\frac{N P V}{(1+k)^{2 t}}+\ldots . . \\
& =N P V\left[1+\frac{1}{(1+k)^{t}}+\frac{1}{(1+k)^{2 t}}+\ldots . . .\right] \\
& =N P V\left[\frac{1}{\left.1-\frac{1}{(1+k)^{2}}\right]=N P V \frac{(1+k)^{i}}{(1+k)^{t}-1}}\right.
\end{aligned}
$$

EXAMPLE: Using the prior example, where $\mathrm{PV}($ costs of A$)=\$ 664,949$ where $\mathrm{t}=4$ and $\mathrm{k}=0.13$

$$
\begin{aligned}
& \text { PV(A) } \infty=\$ 664949 \times \frac{(1.13)^{4}}{(1.13)^{4}-1} \\
& \quad=\$ 1719631
\end{aligned}
$$

$\mathrm{PV}($ Costs of B$)=\$ 499$ 283; $\mathrm{t}=2$ and $\mathrm{k}=0.13$

$$
\begin{aligned}
& \mathrm{PV}(\mathrm{~B}) \infty=\$ 499283 \times \frac{(1.13)^{2}}{(1.13)^{2}-1} \\
&=\$ 2302400
\end{aligned}
$$

For an infinite chain of replacement, the costs of Machine $B(\$.23 m)$ are greater than costs fo $A(\$ 1.7 \mathrm{~m})$ so should choose machine A

Equivalent Annual Value (EAV)

What amount, to be received for n years, is equivalent to receiving the NPV of a project whose life is n years?

$$
N P V=\frac{E A V}{k}\left(1-\frac{1}{(1+k)^{t}}\right) \quad \longrightarrow \quad E A V=\frac{N P V}{\frac{1}{k}\left(1-\frac{1}{(1+k)^{t}}\right)}
$$

1. The PV of a perpetual stream of EAV's is given by:

$$
P V=\frac{E A V}{k} \longrightarrow E A V=\frac{N P V}{\frac{1}{k}\left(1-\frac{1}{(1+k)^{\prime}}\right)} \quad \longrightarrow \quad P V=\left(\frac{1}{k}\right) \frac{N P V}{\frac{1}{k}\left(1-\frac{1}{(1+k)^{c}}\right)}
$$

2. EAV and NPV:

$$
\begin{aligned}
P V & =N P V \frac{1}{\left(1-\frac{1}{(1+k)^{t}}\right)} \\
& =N P V \frac{(1+k)^{t}}{(1+k)^{t}-1} \\
& =N P V \infty
\end{aligned}
$$

$$
=N P V \frac{(1+k)^{t}}{(1-1)^{t}} \quad \begin{aligned}
& \text { Note that the EAV and the perpetual chain of replacement methods } \\
& \text { are equivalents in reaard to choosing a nroiect }
\end{aligned}
$$ are equivalents in regard to choosing a project

$$
E A V=k \times N P V \infty
$$

3. EAV and EAC:

- The principle of EAV is also applicable in the context of comparing the cost of investments of different lives (the equivalent annual costs EAC)
- EAC reflects the annuity cost that has the same present value as the NCFs of an investment over the investment period we are considering

Where:
k is the opportunity cost of capital,
NPVi is the normal NPV of the investment i,
t is the life of the investment

EXAMPLE: Where you are considering replacing your old Nissan with a new Toyota ($r=3 \%$);

- Annual maintenance costs for Nissan = \$1500
- Annual maintenance costs of Toyota = \$200
- Price of Toyota $=15 \mathrm{yrs} \&$ remaining life of Nissan $=3$ years

NPV (Toyota) $=18,000+200 \times \frac{1-(1.03)^{-15}}{0.03}=\$ 20,387.59$
EAC of Toyota $=0.03 \times 20,387.59 \times \frac{(1.03)^{15}}{1.03^{15}-1}=\$ 1707.80$
EAC of new car $>\$ 1500$ SO the Nissan should be used for 3 more years (then buy Toyota)

Risk measures

Risk is the uncertainty of future outcomes or the probability of an adverse outcome

- Alternatively it is a chance of financial loss (the variability of returns associated with an asset)

Standard deviation $=\quad S D(R)=\sqrt{\operatorname{Var}(R)}$

EXAMPLE: What is the standard deviation and variance for the following investment?

```
year 1: 19\%
year 2: \(20 \% \quad \rightarrow \mathbf{s d}=\mathbf{0} .26\) \& \(\mathbf{v a r}=\mathbf{0 . 0 6 7 7}\)
```

year 3: -30\%
year 4: 26\%

EXAMPLE: Yearly returns for the following investment?

Year	Price	Dividend	Returns
1	31.64	0.1	-
2	32.09	0.1	0.0173831
3	34.99	0.17	0.0956684
4	23.02	0.17	-0.337239

(1) Average (do on calculator) - sum/number years $=-0.0747$
(2) $\mathrm{HPR}=(1+0.0174)(1+0.0957)(1-0.3372)-1=0.739$
(3) $\mathrm{SD}=0.2307 / / \mathrm{Var}=0.05322$

Normal distribution

Normal distribution: is completely described by its most likely outcome μ (mean) and σ (standard deviation)

Standard deviation = chance of getting around the average

- 68.26% chance that you get 1 SD around the mean
- 95% chance you get 2 SD below/above the mean

EXAMPLE: exam marks are normally distributed with $\mu=70 \%$ and $\sigma=10 \%$
(1) What percentage of student marks lie within 1 standard deviation from the mean?

- 68.26% of student marks lie between 60% and 80%.
(2) Between what bounds do we have 90% of the marks?
- 90% of students lie between:
- 70\% - (1.645*10\%) AND 70\% + (1.645*10\%)
- Bounds are 53.55% and 86.45%

[^0]: EXAMPLE: You deposit $\$ 1500$ in one year, $\$ 2000$ in two years and $\$ 2500$ in three years in an account paying 10% interest per annum. What is the PV of these cash flows?

