Week 1: Introduction & Sources of Knowledge

Science:

Way of learning about reality through systematic observation & experimentation

Assumptions of Science:

- **Determinism:** Doctrine that the **universe = orderly all events** have **meaningful**, **systematic causes**
- Empiricism: All knowledge = derived through objective observations of organisms & events in the real world
- Parsimony: Best explanation of phenomenon is made w/ the fewest possible assumptions
- Testability: Scientific theories should be testable using currently available research techniques

Sources of Knowledge:

- Intuition: Knowledge gained w/out being consciously aware of its source
- Authority: Knowledge gained from individuals viewed as authority figures
- Logic/Rationalism: Knowledge gained through logical reasoning
- Observation: Knowledge gained through objective observations of organisms & events in the real world
- Tenacity: Knowledge gained by stubbornly clinging to repeated ideas, despite evidence to the contrary
- Superstition: Knowledge gained through subjective feelings, interpreting random events as nonrandom events, or believing in magical events

Week 1: The Scientific Process

 Theory – general relationship btw variables, tries to characterise the cause-&-effect relationship that exists btw the variables

Supported by the tests of hypotheses it generates

2. **Hypothesis** - a **specific testable prediction** about **relationship** btw **variables**

A specific instance of a theory

- 3. Test experiment used to test hypothesis
- Analyse/Conclude experiment → data generated needs to be analysed/interpreted. Allows conclusion of whether to retain or reject the hypothesis
- 5. **Update/Refine Reject** hypothesis = **update theory** & **change** hypothesis

Retain = continue to **generate additional hypotheses** from the theory to **test**

Types of Hypotheses:

- **General Hypothesis:** Poorly specified; states a general relationship should exist btw 2+ variables
- **Directional Hypothesis:** States a relationship should exist btw variables, w/ expected direction of the relationship btw variables

 Measurable Hypothesis: States a relationship should exist btw variables, the expected direction of the relationship btw variables & how this might be measured

Operationalising Variables:

- Important to have a **testable** hypothesis
 - To clearly define how an experiment would run: must operationalise IV & DV
- Operationalism specifying how you have defined a variable, and how it can be quantified

Judgmental Biases:

- **Illusory Correlation:** false perception that 2 things are related when they aren't
- Availability Heuristic
- **Attribution of Cause** (e.g. orange person = more angry)

Research Methods:

- Descriptive
 - o A good starting place for a new research question
- Correlational
 - o How two variables of interest relate to one another
- Experimental
 - Experimental testing of hypotheses

Statistical Methods:

- 1) Descriptive Statistics: provide a concise summary of data
- **2) Inferential Statistics:** use a random sample of data taken from a population to describe and make inferences about the population

Week 2: Pseudoscience

Science vs. Pseudoscience

- Main difference = science usually modifies or abandons failed hypotheses/theories when flaws or new evidence = identified
 - The scientific process
- **Pseudoscience** usually contains:
 - o 1. Unfalsifiable hypotheses/theories
 - Or ignoring negative evidence
 - 2. Vague/unclear/poorly defined concepts
 - o 3. Un-parsimonious hypotheses/theories
 - 4. Using testimonials
 - Need systematic observations
 - o 5. Biased sampling/groups allocation
 - 6. Placebo Effects/Experimenter bias
 - Need double-blind control studies

Week 3: Probability

Probability:

Likelihood of an event occurring

Objective Probability:

Probability that an **event** will **occur based on analysis** of **recorded observations**

- Frequentist: event's probability = the limit of its relative frequency in a large number of trials
 - E.g. probability of landing on heads = proportion of heads we get if we toss a coin many times
- Propensity: event's probability = tendency of situation to yield a certain outcome
 - E.g. probability of landing on heads = the tendency of a coin to land on heads

Subjective Probability:

Probability of landing on heads tells us how strongly we "believe"

Independence:

Assumes that each event and experiment is independent

Each coin flip cannot affect the next coin flip

Multiplicative Law:

Multiplying 2 numbers below 1 (i.e. 30% & 50% chance of 2 events happening) = you get a smaller number/probability

• Chances of both events occurring = lower

Additive Law:

When 2 events, A and B, are mutually exclusive (cannot occur at the same time), the probability that A or B will occur is the sum of the probability of each event:

$$P(A \text{ or } B) = P(A) + P(B)$$

When 2 events, A and B, are non-mutually exclusive, the probability that A or B will occur is:

$$P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$$

Gambler's Fallacy:

A high frequency of 1 outcome will make it less likely to occur in the future

Hot-Hand Fallacy:

Belief that person who has **experienced success** with a **random event** = **greater chance of further success** in **additional attempts**

Regression to the Mean:

Long run average performance of something will vary over time; more likely to **stay closer to the mean** than further away

Conjunction Fallacy:

Assumption that **specific conditions** are **more probable** than a **single general one**

• E.g. Linda is a bank teller vs. Linda is a bank teller & a feminist Law of Large Numbers:

Larger the sample = more representative of the population it was drawn from

Law of Small Numbers:

Smaller sample = the more extreme events/probabilities

Base Rate:

Base rate neglect = tendency for people to mistakenly judge the likelihood of a situation by not taking into account all relevant data

- Likelihood of something occurring anyway independent of another factor
- E.g. John (appears Satanic, but is more likely to be a Christian because a large majority of people are Christian)

2x2 Contingency Table:

Best way to predict probability is to put it into a 2×2 contingency table:

	Disease	No Disease	Total
"Crazy eye" present	80	20	100
"Crazy eye" absent	40	10	50

Helps solve conditional probability

Conditional Probability:

The **probability** of an **event** (A), given that **another** (B) **has already occurred**

Hits, Misses, False Alarms, Correct Rejections:

		В	Not B
Prediction	A	Hit/Success	False Alarm
	Not A	Miss	Correct Rejection

Verification Bias:

Systematically **looking** for **information** to **support** the **hypothesis**, rather than **trying** to **falsify** it

Week 4: Reliability & Validity

Measurement and Error:

- All measurements = the true value of what is being measured + measurement error
 - Measured Score = True Score + Error
 - \circ X = T + e

Researchers aim = **minimise errors** by...

- More is better
 - More participants average across participants
 - More measurements
 - Many occasions tested many times

Reliability:

The **consistency/repeatability** of **results** from a **measurement**