
Sample Material;  

• Qualitative support for causation –  

o Strength: We do not mean a high correlation or a small p-value but that βˆ is large in practical terms.  

o Consistency: A similar effect has been found for different subjects under different circumstances at different times and places.  

o Specificity: The supposed causal factor is associated mostly with a particular response and not with a wide range of other possible responses.  

o Temporality: The supposed causal factor is determined or fixed before the outcome or response is generated.  

o Gradient: The response increases (or decreases) monotonically as the supposed causal variable increases.  

o Plausibility: There is a credible theory suggesting a causal effect.  

o Natural Experiment: A natural experiment exists where subjects have apparently been randomly assigned values of the causal variable. 

• Parameter estimation; Once we have settled upon a model, we must decide how to estimate the parameters of that model. Generally, the method of least-squares is employed 

for this purpose.  

o Least squares estimation -  Specifically, the method of least-squares starts by assigning a distance function (below) which measures the discrepancy between any 

line and the observed dataset. The least-squares estimates of the true parameters 𝛽0 and 𝛽1 are then those values of 𝑏0 and 𝑏1 which minimize the distance 

function d;  

▪ 𝑑(𝑏0, 𝑏1) =  ∑ (𝑌𝑖 −  𝑏0 − 𝑏1𝑥𝑖)2𝑛
𝑖=1  

▪ In doing the above the resulting fitted regression line, 𝑌 =  𝛽0 + 𝛽1 will be “close” to all the observed data points in some sense.  

• Once done, we define the fitted value of each data point as;  

▪ 𝑌̂𝑖 =  𝐸(𝑌𝑖|𝑥) =  𝛽0 + 𝛽1𝑥 

• And associated residual value by;  

▪ 𝑒𝑖 =  𝑌𝑖 −  𝑌̂𝑖  

• We want to minimize the errors;  

▪ ∑ 𝑒𝑖
2𝑛

𝑖=1 =  ∑ (𝑌𝑖 − (𝛽0 + 𝛽1𝑥𝑖))2𝑛
𝑖=1   

• Differentiate in respect to 𝛽0 𝑎𝑛𝑑 𝛽1 to get the answers of each. These estimators are unbiased which means their sampling distribution 

will be centred at the true value (population);  

1. 
𝜕𝑑

𝜕𝛽0
=  −2 ∑(𝑌𝑖 − 𝛽0 − 𝛽1𝑥𝑖) =  0 

• 𝛽0 =  𝑦 −  𝛽1𝑥̅  

2. 
𝜕𝑑

𝜕𝛽1
=  −2 𝑥𝑖 ∑(𝑌𝑖 − 𝛽0 − 𝛽1) =  0 

• 𝛽1 =  
𝑆𝑥𝑦

𝑆𝑥𝑥
   

i. 𝑠𝑥𝑦 =  ∑ 𝑥𝑖𝑦𝑖 − 𝑛𝑥̅𝑦 or 𝑠𝑥𝑦 = ∑(𝑥𝑖− 𝑥̅)(𝑦𝑖 − 𝑦)̅̅ ̅ 

ii. 𝑠𝑥𝑥 =  ∑ 𝑥𝑖
2 − 𝑛𝑥̅2  or 𝑠𝑥𝑥 =  ∑(𝑥𝑖− 𝑥̅𝑖 )

2 

iii. 𝑆𝑎𝑚𝑝𝑙𝑒 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑜𝑓 𝑋 = 𝑆𝑥
2 =

𝑆𝑥𝑥

𝑛−1
   

iv. 𝑆𝑎𝑚𝑝𝑙𝑒 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑜𝑓 𝑌 = 𝑆𝑦
2 =

𝑆𝑦𝑦

𝑛−1
=  

𝑆𝑆𝑇

𝑛−1
 

v. 𝑆𝑎𝑚𝑝𝑙𝑒 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑜𝑓 𝑋 𝑎𝑛𝑑 𝑌 =
𝑆𝑥𝑦

𝑛−1
 

3. Therefore we can write the following;  

• 𝑌̅ =  𝛽0 + 𝛽1𝑋̅ 

4. Estimated of these are unbiased and thus true for the population which is why we can write 𝛽0 instead of 𝛽0̂ because our 

sample is true for the population 

5. Variances of estimators 𝛽0 𝑎𝑛𝑑 𝛽1 which are the standard erros in regression ourput under square root;  

• 𝑉 (𝛽̂𝑜) =  𝜎2(
1

𝑛
+

𝑥̅2

𝑠𝑥𝑥
)  

• 𝑉 (𝛽̂1) =  
𝜎2

𝑆𝑥𝑥
 

• Further discussion of outliers (Faraway chapter 6);  

1. Two or more outliers next to each other can hide each other.  

2. An outlier in one model may not be an outlier in another when the variables have been changed or transformed. You will usually need to reinvestigate 

the question of outliers when you change the model.  

3. The error distribution may not be normal and so larger residuals may be expected. For example, day-to-day changes in stock indices seem mostly 

normal, but larger changes occur from time to time.  

4. Individual outliers are usually much less of a problem in larger datasets. A single point will not have the leverage to affect the fit very much. It is still 

worth identifying outliers if these types of observations are worth knowing about in the particular application. For large datasets, we need only to 

worry about clusters of outliers. Such clusters are less likely to occur by chance and more likely to represent actual structure. Finding these clusters is 

not always easy. 

• Final discussion of assumptions underling the model; we can order the four assumptions in following order from most important to least important.  

1. The systematic form of the model - If you get this seriously wrong, then predictions will be inaccurate and any explanation of the relationship between the variables 

may be biased in misleading ways.  

2. Dependence of errors - The presence of strong dependence means that there is less information in the data than the sample size may suggest.  

3. Nonconstant variance - A failure to address this violation of the linear model assumptions may result in inaccurate inferences (testing and confidence interavals)  

4. Normality - This is the least important assumption. For large datasets, the inference will be quite robust to a lack of normality as the central limit theorem will mean 

that the approximations will tend to be adequate. 

• Interpretation of the Regression Coefficients 

o Interpretation of 𝛽̂0;  

▪ The expected value of Y when x = 0. 

▪ In some cases (eg heart rate) having x=0 may be stupid because here the person would be dead 

o Interpretation of 𝛽̂1;  

▪ The expected change in the value of Y for a unit change in x 

• Model selection; In general, we will favor models with less explained variation meaning error.   

o Smaller MSE (𝜎̂2 =  𝑠2) - Seen in the ANOVA table (Mean Squared Residual Error)  

o Smaller RSE ( 𝜎̂ = 𝑠) - Seen in regression summary 

• We may also base our decision of the model with the highest adjusted coefficient of determination 

• F-tests;  

o We can use F-tests to examine the drop is 𝜎̂ is statistically significant.  

o Note, that 𝜎̂ is on the same scale as Y , so we cannot compare models on different scales.  

o We cannot compare Y and log(Y) because they are not nested. 

• 𝑹𝟐; we can use 𝑅2 to compare models and even models with different scales because it is a standardized measure  



o 𝑅2 = 1 −  
∑ (𝑦𝑖−𝑦𝑖̂)2𝑛

𝑖=1

∑ (𝑦𝑖−𝑦̅)2𝑛
𝑖=1

= 1 −
𝑆𝑆𝐸

𝑆𝑆𝑇
 𝑂𝑅 𝑅2 =  

∑ (𝑦𝑖̂−𝑦̅)2 𝑛
𝑖=1

∑ (𝑦𝑖−𝑦̅)2𝑛
𝑖=1

=
𝑆𝑆𝑅

𝑆𝑆𝑇
  

o Issues;  

▪ No obvious point of comparison. How large should 𝑅2 be?  

▪ Does not protect from overfitting the data. Every additional covariate will increase 𝑅2 

o Overfitting; is when the model too closely follows the observed data and thus would be poor for prediction of new data  

o As was mentioned, when we add covariates we lower the SSerror, which then increases 𝑅2.  

o This suggests that 𝑅2 is useless for choosing between a model with p covariates compared to a model with p + 1 covariates. P can be written as d.  

o We want approaches that penalize for adding extra variables. 

• Methods which penalize for adding extra variables;  

o Adjusted 𝑅2 – Large is good;  

▪ 𝑅𝑎𝑑𝑗
2 = 1 −

𝑆𝑆𝐸

𝑛−𝑝
𝑆𝑆𝑇

𝑛−1

= 1 − (
𝑛−1

𝑛−𝑝
) × (1 − 𝑅2) 

o 𝑃𝑟𝑒𝑠𝑠𝑝 – small is good;  

▪ Consider the press residuals; 𝜖(̂𝑖) = 𝑌𝑖 −  𝑌̂(𝑖) =  
𝜖̂(𝑖)

1−ℎ𝑖𝑖
  

▪ 𝑃𝑟𝑒𝑠𝑠𝑝 =  ∑ 𝜖(̂𝑖)
2 =  ∑ (

𝜖̂(𝑖)

1−ℎ𝑖𝑖
)2  𝑛

𝑖=1   𝑛
𝑖=1  

▪ Sadly, the leaps library does not have the PRESS statistic. As is done in the Brick, you could code up all the possible models, fit them and calculate the 

statistic! 

o Mallows 𝐶𝑝 – smaller is better;  

▪ Based on the idea that mis-specifying the model will create bias in the estimate of 𝜎2 , and that over-fitting will inflate the variances for predictions.  

▪ Lengthy arguments and derivation of can be found on pages 35-36 in Chapter 2 of the Brick.  

• 𝐶𝑝 = 𝑝 +
(𝑛−𝑝)(𝑠2−𝜎̂2)

𝜎̂2
 

▪ This requires some “independent” estimate of 𝜎̂2 .  

▪ In practice, we often just use 𝜎̂2 =  𝑠2 from the full model.  

▪ We prefer models, where 𝐶𝑝 = 𝑝, but because we used 𝑠2 − 𝜎̂2 from the full model, for the full model 𝐶𝑝 = 𝑝 is guaranteed.  

▪ This suggests, we want a smaller model, compared to the full model where 𝐶𝑝 is close to 𝑝 

▪ You will see that different author’s may arrange the algebra differently. For example Faraway has:  

• 𝐶𝑝 =  
𝑆𝑆𝐸𝑝

𝜎̂2
+ 2𝑝 − 𝑛  

▪ Note: 𝐸[𝑆𝑆𝐸𝑝 ]  =  (𝑛 −  𝑝)𝜎̂2 , so 𝐸[𝐶𝑝]  ≈  𝑝.  

▪ A model with a bad fit will have Cp much bigger than p 

• Hypothesis test using our F-statistic/F-Test;  

1. 𝐻0 : 
𝜎𝑌|𝑋

2

𝜎2
= 1 

1. 𝐻1 : 
𝜎𝑌|𝑋

2

𝜎2
> 1 

a. We are testing to see if the extra variation of the model including x gives us more variation. We set alternative hypothesis to > 1 to see if we are getting 

any of that extra variance or we are just getting the normal variance 

b. Overall F-test – done from the initial output of the linear model also gives a F-stat which is a quick test to see if any of the overall covariances are 

useful. In this case both F-stats match as we are using SLR 

2. 𝑇𝑒𝑠𝑡 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 = 𝐹 =  
𝑀𝑆𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛

𝑀𝑆𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙/𝑒𝑟𝑟𝑜𝑟
  

a. Where MS regression is our top portion of the hypothesis and MS residual is the bottom part 

b. With degree of freedom for the numerator=K=1 (in this case - SLR) 

c. With degree of freedom of n-p = n-2 (in this case - SLR) 

3. Decision rule –  

a. 𝛼 = 0.05 

b. Reject 𝐻0 if 𝐹𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 >  𝐹1,𝑛−2 𝑎𝑡 𝛼 = 0.05 

4. Calculation –  

a.  
b. We can see that our observed test statistic pf 48.076 is in the rejection region so we reject the null hypothesis 

5. Conclusion –  

a. As 𝐹𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 = 48.0786 >  𝐹1,𝑛−2 = 4.45 we can reject the null hypothesis  

b. Also we can see the 𝑝 − 𝑣𝑎𝑙𝑢𝑒 <  𝛼 = 0.05 so we can reject the null hypothesis.  

6. Interpretation - the proportion of the variance in Y explained by the larger model (including x) is significantly larger than the error variance.  

a. P-value is the probability of seeing your observed tests statistic or something more extreme where more extreme is measured by the alternative 

hypothesis under the assumption the null hypothesis is true 

 


