Antibodies

- Produced by differentiated B plasma cells
- Identify and neutralise foreign pathogens
- Specific to a particular antigen via the hypervariable region (antigen binding site)
- 4 chains
 - o 2 identical heavy (H)
 - 2 identical light (L)
 - o Each have a constant and a variable region
 - o Heavy and light chains paired by disulphide bond
 - Heavy chains paired with each other by disulphide bonds

5 isotypes

IgG	IgD	IgA	IgE	IgM
 Most abundant Monomeric Major Ab of 2° immune response 	 On B cell membrane Extended hinge region 	DimerPredominantAb in mucoussecretionsFound on	 Pentamer held together by J chain Major Ab of 1° immune response 	 2 additional C regions Pentamer with 10 binding sites
 Longest half- life (20 - 24 days) Immune- experienced 	Function unknown	mucosal surfaces	Additional C region and amino acid tailpiece for multimerisation	 On basophils and mast cells Allergies, parasites, helminths

- Variable region for antigen binding
 - Site of somatic hypermutation
- Constant region for effector function, distinct distribution and access in body
 - \circ Class switch recombination occurs on H_{C} region

B cell Development

- B cells are produced throughout life in bone marrow
- Originate from stem cells close to endosteal (inner) surface of bone
- Immature B cells only able to leave bone marrow if they express functional BCR on surface
- Exit via sinusoids (checkpoints) and migrate to periphery
- Surface Ab is antigen receptor
- Binding of antigen → CD4 T cell help → differentiation into memory cells and plasma cells
- B cell response to antigen changes with time (affinity and effector functions)
- VDJ recombination of heavy chain occurs in the Pro-B cell
- In Pre-B cell, heavy chains pair with 2 surrogate light chains and signalling chains (Iga and Ig β) to form pre-BCR
 - Since real light chains have not been formed yet
 - Surrogate light chains are the same in every B cell (not formed by rearrangement)
 - o Pre-BCR then sends success signal into cell (V_H success signal)
 - Mutations that block this signal block development (e.g. Iga/Igβ, BLNK, Syk, Btk)
- In immature B cell, the real light chain pairs with existing heavy chain and signalling chains (Iga and $Ig\beta$) to form complete Ab (BCR)
 - BCR sends success signal sent into cell (V_L success signal)
- Immature B cells expressing BCR leave bone marrow and migrate to spleen
 - o Naïve B cells express IgM and IgD on their surface
 - o Naïve B cell populations found in also in lymph nodes, mucosal surfaces, gut
 - o Await specific Ag and T cell help before further differentiation
- Mature B cells
 - Down-regulation of VDJ machinery
 - Express both IgM and IgD with same antigen specificity (identical variable regions)

Immune Response

- Affinity = binding strength
- Avidity = overall strength of Ab-Ag complex
- Primary immune response
 - o Initial exposure to antigen
 - o IgM secreted (low affinity, high avidity), followed by IgG/IgA (higher affinity)
 - Class switch recombination
 - Directed by signals from T cells and/or antigen
 - Ab specificity remains unchanged
- Secondary immune response (memory response)
 - Faster (same IgM response but faster CSR to IgG)
 - Greater magnitude (more Ab produced)
 - Higher affinity Ab than primary response due to Affinity Maturation by Somatic Hypermutation
- Lymphocyte activation
 - o Antigen enters lymphoid organ and presented to T cell via APC
 - o Antigen-specific B/T cells activated, T cells express CD40L, B cells express CD40
 - o Activated B and T cells migrate towards each other and meet at T/B cell boundary
 - o Co-stimulation occurs via ICOS (T cell) and ICOSL (B cell)
- Germinal centres
 - o Site in 2° lymphoid tissue where mature B cells proliferate into memory and plasma cells
 - Proliferation, isotype switching, somatic hypermutation, affinity maturation, death and memory formation occur here
- Isotype switching/Class Switch Recombination
 - o Changing constant region of antibody heavy chain (H_C) to change effector function
 - o Directed by cytokine signals by T cells and CD40/CD40L interaction and/or antigen
 - $_{\odot}$ Transcription of H chain gene starts from promoter upstream of V_H segment therefore exons encoding constant regions cannot be expressed until a V segment is placed upstream of them
 - Order: IgG3, IgG1, IgE, IgA1, IgA2, IgG2, IgG4, IgE, IgA2
 - Each constant region has a switch (S) region upstream
 - Rearrangement occurs between to S regions
 - Activated Induced Cytosine Deaminase (AID) enzyme introduces nicks into S region DNA, creating double stranded breaks in 2 S regions (now have S-S sequence)
 - Expressed only in activated B cells therefore in all germinal centres
 - Ends are joined and intervening DNA deleted
- Somatic hypermutation
 - Random introduction of random point mutations by AID into V gene segments of heavy and light chains in germinal centres B cells
 - May cause amino acid replacements, affecting antigen binding affinity (may increase or decrease)
 - o Occurs during B cell proliferation, in dark zones of germinal centres
 - Occurs in hotspots of DNA (hypervariable complementary determining regions)
 - Not all B cells undergo this
- Affinity maturation
 - o Selection of matured B cells with improved affinity → continue to proliferate
 - o Low affinity B cells die
 - Tested on follicular dendritic cells

Mechanisms to generate B cell diversity of BCR				
Somatic Recombination	Pro-B Pre-B Immature B VDJ recombination of H-chain of H-chain			
Pairing of various heavy and light chains	Pre-BCR formed in Pre-B cell with surrogate light chain, final BCR formed in Immature B cell			
Junctional diversity	Random nucleotide addition in H-chain by Tdt			

Somatic Hypermutation and Affinity Maturation	Single point mutation via AID and selection of
	high affinity binding Ab

Immunoglobulin Genes

- 2 light chain loci (VJC)
 - o λ on chromosome 22
 - o κ on chromosome 2
- 1 heavy chain locus (VDJC) on chromosome 14
- Constant region
 - o On each of the 3 loci
 - Distinct sequence for every isotype (IgG1-4, IgA1-2, IgM, IgE, IgD)
- Variable region
 - o Heavy chain rearranged first, then one of the light chains
 - o Other light chain rearranged during receptor editing prior to exiting bone marrow
 - o 1,100,000 possible V_H/V_L combinations from 115 minigene segments
- Same processes and proteins used in T and B cell development
- **VDJ recombination** (occurs in Pro-B cell for H-chain)
 - Step 1: Site recognition and DNA cleavage
 - Recombination Signal Sequences (RSS) adjacent to each VDJ gene segment is recognised by RAG complex (RAG1, RAG2, HMG1) and cut, forming double stranded DNA breaks
 - Cut ends are stitched together (ligated) to form
 - Coding joint (hairpins) V-J, V-DJ for H chains and V-J for L chains
 - Signal end joints bit that is cut out by RAG complex (intervening DNA)
 - Step 2: Non-homologous end joining
 - DNA protein kinases bind to each DNA end and recruits Artemis, Ku70 and Ku80
 - Autophosphorylation of DNA protein kinases activates Artemis
 - Artemis is a nuclease with both endo- and exonuclease activity
 - Closes signal end to form signal joint (non-homologous end joining)
 - Opens coding hairpins
 - Step 3: Ligation
 - DNA protein kinases and XRCC4 (DNA ligase) align DNA ends and recruit Tdt enzyme (DNA polymerase)
 - Tdt adds random nucleotides to coding end hairpins in H-chain until complementary sequence is achieved
 - Creates more diversity
 - Exonucleases remove unpaired bases from coding ends
 - DNA polymerase λ and μ fill in blank complementary nucleotides
 - Coding ends are then ligated by DNA ligase IV
- Diversity is generated by
 - o Random selection and rearrangement of VDJ minigene segments
 - Independent rearrangement at heavy and light chain loci
 - o Random insertion of nucleotides by Tdt
- Mutations in rearrangement proteins (RAG, Artemis, etc.) can block development
- Tdt generally absent at light chain loci

Proteins involved in VDJ recombination		
RSS	Recombination Signal Sequence; a unique nucleotide	
	sequence that is the RAG recognition sequence; is	
	adjacent to each minigene segment (VDJ)	
RAG1/2	Recombination Activating Genes are essential to Ab gene recombination; they provide the recognition and DNA	
	cleavage activity	
HMG1	High Mobility Group 1 protein; chromatin binding;	
	structural protein also required for rearrangement but not	
	unique to Ab gene rearrangement	
Artemis/DNA protein kinases/Ku70/Ku80	Recognition and synapsis of the DNA ends	
DNA ligase IV/XRCC4	X-ray Repair Complementing Chinese hamster Cells;	
	Joining DNA ends	

Tdt	Terminal Deoxynucleotidyl Transferase; unique to B cells;
	adds extra, random nucleotides to the broken ends at V-
	D-J junctions; does not work at light chain loci

Tolerance

- B cells are screened for autoreactivity at immature B cell stage (in bone marrow)
 - o High affinity → apoptosis
 - Low affinity → anergic
- Receptor editing rearranges other light chain to escape autoreactivity (second chance)
 - o Reactivation of VDJ rearrangement machinery

Primary Immunodeficiencies (PIDs)

- >350 rare genetic disorders
- Impaired ability to produce normal immune response
- Genetic in nature
- Antibody deficiencies (mostly) humoral (B cell) immunity affected
 - X-linked agammaglobulinaemia (XLA)
 - Common Variable Immunodeficiency (CVID)
 - Hyper IgM Syndromes (HIGM)
- Combined Immunodeficiencies humoral (B cell) and cellular (T cell) immunity affected
 - Severe Combined Immunodeficiency (SCID)
 - Defect in T cell differentiation resulting in impaired B cell function (due to no T cell help)
- Treatment
 - Replace entire immune system (e.g. in SCID, XLA) via
 - Haematopoietic stem cell transplantation (HSCT)
 - Gene therapy
 - Those with some antibody can undergo host response therefore are instead given intravenous antibody replacement (IVIG) or subcutaneous antibody replacement (SCIG)
 - E.g. HIGM, CVID

Severe Combined Immunodeficiency (SCID)

- E.g. the boy in the bubble (David Vetter)
- Lack of T cell differentiation
 - Therefore, no T cells
- Lack of B cells (due to no T cell help)
 - o Therefore, little to no serum antibody of any isotype
- Recurrent viral, fungal and bacterial infections
- Diagnosis newborn screening
 - Absence of signal joints is evidence of absence of B/T cell development
 - Quantification of TRECS (TCR excision circles) and KRECS (kappa-deleting recombination excision circles) by PCR used to diagnose SCID
 - No TRECS → No T cells
 - No KRECS → No B cells
- Treatment
 - Medications antibiotics, antifungals, antivirals for infections
 - Avoiding exposure
 - Antibody supplementation (IVIG)
 - o Enzyme replacement therapy for ADA deficiency
 - Haematopoietic stem cell transplantation (HSCT) most effective
 - Transplant from bone marrow, peripheral blood stem cells, umbilical cord stem cells
 - Produce a continuous supply of healthy lymphocytes

- Immune suppression not required due to absence of T cells
- Gene therapy ongoing clinical trials

X-Linked Agammaglobulinaemia (XLA)

- Due to mutation in Bruton's Tyrosine Kinase (BTK)
 - Involved in the pre-BCR success signal pathway
 - o Some forms result in residual Btk expression and signalling
 - Mild disease, later onset
 - Complete loss-of-function of Btk
 - Severe, early-onset
- No B cells
 - Therefore, little to no serum Ab of all isotypes
- Delay in presentation of disease
 - o Maternal Abs offer protection in first months
- Recurrent infections
 - o Greater risk of life-threatening bacterial pneumonias and neurological viral encephalitis
- Diagnosis
 - Test Ab levels
 - o CD19+ B cell count
 - Btk sequencing
 - o Gene-based testing: prenatal, Sanger sequencing, KRECS newborn screening
- Treatment
 - Intravenous Ab supplementation (IVIG)
 - o Subcutaneous Ab supplementation (SCIG) self-administered

Hyper IgM Syndromes (HIGM)

- X-linked CD40L deficiency (HIGM1)
 - o Cellular, humoral and innate defects
 - o Defective B cell differentiation, no germinal centres
 - o No immune memory
- Pathogenesis
 - Class switch recombination (CSR) defects → T cell defects
 - Somatic hypermutation defects → lack of high affinity Abs, T cell defects
- Decreased IgG, normal-high IgM
- Variable symptoms and severity
- Extremely rare
- Treatment
 - o IVIG, SCIG
 - Bone marrow transplant, gene therapy for XL-HIGM

Common Variable Immunodeficiency (CVID)

- Largest class of PIDs
- Most common PID in Australia and worldwide
- B cells fail to differentiate
- Diagnosis
 - Hypogammaglobulinaemia (reduced IgG)
 - Recurrent bacterial infections
 - No Abs even when given vaccine
- Treatment
 - Monthly IVIG or SCIG infusions
 - Effective for infectious-only phenotype
 - Many patients have multiple complications