Lecture 5 - Bivariate Data \& Least Squares Estimates

Probability Theory

- As we have two random variables (X and Y), the outcomes from an experiment could be descried by more than one variable, so we have a multivariate probability distribution (e.g. $Y=$ printers sold, $X=P C s$ sold)

Frequency Distribution

\# PCs (X)						
\# Printers (Y)	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	Total Pr(Y)
$\mathbf{0}$	6	6	4	4	$\mathbf{2}$	$\mathbf{2 2}$
$\mathbf{1}$	4	10	12	4	2	32
$\mathbf{2}$	2	4	20	10	10	46
$\mathbf{3}$	2	2	10	20	20	54
$\mathbf{4}$	2	2	2	10	30	46
Total $\operatorname{Pr}(\boldsymbol{X})$	16	24	48	48	64	200

Relative Frequency Distribution

\# PCs $\mathbf{X} \mathbf{~}$							
\# Printers $\mathbf{(Y)}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	Total Pr(Y)	
$\mathbf{0}$	0.03	0.03	0.02	0.02	0.01	0.11	
$\mathbf{1}$	0.02	0.05	0.06	0.02	0.01	0.16	
$\mathbf{2}$	0.01	0.02	0.10	0.05	0.05	0.23	
$\mathbf{3}$	0.01	0.01	0.05	0.10	0.10	0.27	
$\mathbf{4}$	0.01	0.01	0.01	0.05	0.15	0.23	
Total Pr(X)	0.08	0.12	0.24	0.24	0.23	1	

- Their joint probability of occurrence is defined by the joint probability mass (density) function $\operatorname{Pr}[X=x, Y=y]$ (e.g. $\operatorname{Pr}[\mathrm{X}=1, \mathrm{Y}=2]=0.2$)
- Their marginal probability is the probability that X (or Y) assumes a given value regardless of the values taken by $Y($ or $X)(e . g . \operatorname{Pr}[X=1]=0.12)$
- Conditional Probability Functions - finding the probability that $Y=y$, conditional upon that $X=x$, and vice versa

$$
\operatorname{Pr}[Y=y \mid X=x]
$$

- Conditional Distribution
- Bayes Theorem (note: \cap means 'and'):

$$
\begin{gathered}
\operatorname{Pr}[A \mid B]=\frac{\operatorname{Pr}[A \cap B]}{\operatorname{Pr}[B]} \\
\operatorname{Pr}[Y=y \mid X=x]=\frac{\operatorname{Pr}[Y=y, X=x]}{\operatorname{Pr}[X=x]}
\end{gathered}
$$

- In regression analysis, interest is in studying the behaviour of one variable (dependent) conditional upon the knowledge of another variable (independent) (e.g. the hourly wage conditional upon education)
- Statistical Independence: X and Y are statistically independent if the value of X is unrelated to the value of Y
- Statistically Independent if:

$$
\begin{gathered}
\operatorname{Pr}[Y=y \mid X=x]=\operatorname{Pr}[Y=y] \\
\operatorname{Pr}[Y=y \cap X=x]=\operatorname{Pr}[Y=y] * \operatorname{Pr}[X=x]
\end{gathered}
$$

