Lecture 5 – Bivariate Data & Least Squares Estimates

Probability Theory

• As we have **two random variables** (X and Y), the outcomes from an experiment could be descried by more than one variable, so we have a **multivariate probability distribution** (e.g. Y = printers sold, X = PCs sold)

# PCs (X)									
# Printers (Y)	0	1	2	3	4	Total Pr(Y)			
0	6	6	4	4	2	22			
1	4	10	12	4	2	32			
2	2	4	20	10	10	46			
3	2	2	10	20	20	54			
4	2	2	2	10	30	46			
Total Pr(X)	16	24	48	48	64	200			

Frequency Distribution

Relative Frequency Distribution

# PCs (X)									
# Printers (Y)	0	1	2	3	4	Total Pr(Y)			
0	0.03	0.03	0.02	0.02	0.01	0.11			
1	0.02	0.05	0.06	0.02	0.01	0.16			
2	0.01	0.02	0.10	0.05	0.05	0.23			
3	0.01	0.01	0.05	0.10	0.10	0.27			
4	0.01	0.01	0.01	0.05	0.15	0.23			
Total Pr(X)	0.08	0.12	0.24	0.24	0.23	1			

- Their joint probability of occurrence is defined by the joint probability mass (density) function Pr[X = x, Y = y] (e.g. Pr [X=1, Y=2] = 0.2)
- Their marginal probability is the probability that X (or Y) assumes a given value regardless of the values taken by Y (or X) (e.g. Pr [X = 1] = 0.12)
- Conditional Probability Functions finding the probability that Y = y, conditional upon that X = x, and vice versa

$$Pr[Y = y \mid X = x]$$

• Conditional Distribution

•

<u>Bayes Theorem</u> (note: ∩ means 'and'):

$$Pr[A|B] = \frac{Pr[A \cap B]}{Pr[B]}$$
$$Pr[Y = y \mid X = x] = \frac{Pr[Y = y, X = x]}{Pr[X = x]}$$

- In regression analysis, interest is in studying the behaviour of one variable (dependent) conditional upon the knowledge of another variable (independent) (e.g. the hourly wage conditional upon education)
- Statistical Independence: X and Y are statistically independent if the value of X is unrelated to the value of Y
 - <u>Statistically Independent if</u>:

$$Pr[Y = y \mid X = x] = Pr[Y = y]$$
$$Pr[Y = y \cap X = x] = Pr[Y = y] * Pr[X = x]$$