1 Introduction

1.1 What is econometrics

Use of statistical methods to analyse typically observational/nonexperimental data

- Estimate relationships between economic variables
- Forecasting/evaluating impact of policy changes

1.2 Components of econometric analysis

- (1) Economic models (theoretical context)
 - Micro/macro models establish relationship between economic variables
 - Provides a priori expectations

Example: theory of additional training on productivity

(2) Econometric models

- Requires data & decisions on functional form
- ➤ Form of data impacts model specification/results
- ➤ Non-deterministic relationship with error/disturbance

Example: map theory into econometric model interested in β_3

$$Wage = \beta_0 + \beta_1 educ + \beta_2 exper + \beta_3 training + u$$

(3) Economic Data

- Cross sectional: observations for units of interest at given point in time
 - o Reasonable to assume pure random sampling hence independence
- > Time series: observations for a unit of interest collected over time
 - Observations typically serially correlated making order important
 - o Typical features include trends, cycles & seasonality

- > Pooled cross sections: two or more cross sections combined in one data set
 - o Samples drawn independently of each other
 - Often used to evaluate effect of policy changes
- ➤ Panel/longitudinal: Same cross-sectional unit followed over time
 - Can account for time-invariant unobservables & lagged responses

1.3 Causality & notion of ceteris paribus

Causal effect of x on y

How does y change if x is changed with all other relevant factors held constant?

Many economic questions are ceteris paribus

- ➤ Useful to set up experiment designed to find causal inference
- ➤ Harder with observational data as x is often related to other factors

2 Simple Regression Model

2.1 Simple regression model

Variable y explained in terms of variable x

$$y = \beta o + \beta 1 x + u$$

y is the dependent (explained, response, endogenous) x is the explanatory (independent, regressor, exogenous) u is the disturbance/error term containing unobservables β_0 is the intercept β_1 is the slope

For β_1 to be causal interpretation

- ➤ All other factors held constant
- Zero conditional mean assumption must hold
 - o *x* does not contain information about mean of *u*
 - \circ *u* does not depend on x

$$E\left(u\left/ x\right) =E\left(u\right) =0$$

$$E(y \mid x) = E(\beta_0 + \beta_1 x + u \mid x)$$
$$= \beta_0 + \beta_1 x + E(u \mid x)$$
$$= \beta_0 + \beta_1 x$$

 \triangleright Average value of y can be expressed as linear function of x

2.2 Deriving OLS estimates

Let $\{(xi, yi); i = 1, ...n\}$ denote a random sample with equation

$$y_i = \beta_0 + \beta_1 + u_i$$
 for each i

(1) Define regression residuals & fitted values

$$\hat{u}_i = y_i - \hat{y}_i = y_i - (\hat{\beta}_0 + \hat{\beta}_1 x_i)$$

(2) Solve minimisation problem

$$min \sum_{i=1}^{n} \hat{u}_i^2 \rightarrow \hat{\beta}_0, \hat{\beta}_1$$

(3) Obtain OLS estimates

 \triangleright β_1 is the sample covariance between $x_i \& y_i$ divided by the samples variance of x_i

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2}, \quad \hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$$

2.3 Algebraic properties of OLS

Several useful properties of OLS estimates

(1) Residuals from fitted regression line sum to zero

$$\sum_{i=1}^{n} \hat{u}_i = 0$$

(2) Covariance between residuals & explanatory variable is zero

$$\sum_{i=1}^{n} x_i \hat{u}_i = 0$$

(3) Sample averages of x,y lie on fitted regression line

$$\bar{y} = \hat{\beta}_0 + \hat{\beta}_1 \bar{x}$$

2.4 Goodness of fit

To measure how well OLS regression line fits the data

- Decompose variation in dependent variable
 - \circ Assume sample average of fitted values equals sample average of y_i

$$(y_i - \bar{y}) = (\hat{y}_i - \bar{y}) + \hat{u}_i$$

Total variation from mean = part explained by x + unexplained deviation

$$SST = SSE + SSR$$

SST = total sum of squares

SSE = explained sum of squares

SSR = residual sum of squares

$$SST = \sum_{i=1}^{n} (y_i - \bar{y})^2$$
; $SSE = \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2$; $SSR = \sum_{i=1}^{n} \hat{u}_i^2$

R-squared measures proportion of sample variation in y explained by x

➤ High r² does not necessarily imply causal relationship

> Tend to be lower in cross-sectional data

$$R^2 = \frac{SSE}{SST} = 1 - \frac{SSR}{SST}$$

2.5 Nonlinear relationships

Possible to incorporate non-linear relationships into linear regression model

➤ More accurately describes many applied problems

Semi-logarithmic specification

- ➤ Avoid logging variables measured in units such as percentage points or can take zero/negative values
- ➤ Mitigates outliers & helps secure normality/homoscedasticity
- ➤ Slope coefficient invariant to rescaling