LEC 1- ALZHEIMER'S DISEASE

- **dementia diagnosis**: at least 2 of memory, communication + language, ability to focus and pay attention, reasoning and judgment, visual perception
- types of dementia: AD (60-80%), vascular dementia (10%), PD or dementia w LB, frontotemporal dementia, frontotemporal lobar degeneration (worse than AD), mixed dementia (AD + vascular), CJD, HD, Wernicke-Korsakoff syndrome (thiamine vit B1 deficiency), hydrocephalus
- dementias classified by protein deposit: tauopathies (AD, CBD, FTD), synucleinopathies (PD, DLB)
- proteinopathies- commonality in pathology of age-related neurodegenerative disease

Disease	Protein Deposit	Toxic Protein	
Alzheimer's Disease	extracellular plaques intracellular tangles	Aβ tau	
Parkinson's Disease	Lewy bodies	α-synuclein	> /• \
Prion Disease	Prion plaque	PrP ^{Sc}	Lewy bodies
Polyglutamine disease eg. Huntingtons	nuclear and cytoplasmic inclusions	Polyglutamine – containing protein	b
Pick's disease	cytoplasmic deposits	tau	>
Familial amyotrophic lateral sclerosis	Bunina bodies	SOD1	Pick bodies

AD

3 stages:

- o prodromal: preclinical with no symptoms, up to 30 years, decline in cognition
- o MCI
- o clinical AD: mild- typically diagnosed, moderate, severe- body shuts down

- 90% sporadic: >65
 - 10% familial: early onset, rare but high risk
- twin studies show heritability of AD is 60% > thus AD is genetic + non-genetic
- **risk factors**: ageing, women, hypertension + CVD, head injury, lower education, genetics (apoE 4 allele increases risk, KO mice protected from AB deposition; Down syndrome- 3 copies of APP)

pathology

- loss of synapses/neurons (cell body) > atrophy of cerebral cortex and hippocampus, enlarged ventricles
- protein aggregates:
 - NFT- intracellular, hyperphosphorylated tau
 - amyloid plaque- extracellular, AB peptide

cholinergic pathway

- o loss of cholinergic function, damage to cholinergic neurons in the hippocampus, frontal cortex, amygdala, nucleus basilis, medial septum
- o cholinergic pathways project to thalamus > role in conscious awareness, attention, working memory
- o downregulation of choline acetyltransferase (ChAT) and acetylcholinesterase (AChE) is assoc w onset of cognitive impairment
- o major alterations in cholinergic system: choline uptake, impaired ACh release, downregulation of nicotinic and muscarinic receptors, dysfunctional neurotrophin support, deficits in axonal transport
- o AB peptide interacts w cholinergic receptors and affects their function
- o symptomatic treatment- AChE inhibitors to increase ACh, doesn't treat pathology

• protein aggregation

Addition of pre-aggregated protein (seeds) accelerates aggregation

Amyloid beta peptide

APP > AB42 and AB40 > amyloid plaque- amyloidogenic pathway

- $\circ\quad$ APP is cleaved first by $\beta\text{-secretase},$ which releases sAPP β
- o then y-secretase cleaves, which releases AB and APP intracellular domain
- (cleavage by α-secretase is non-amyloidogenic)

• familial AD mutations increase the AB42:AB40 ratio - early onset, dominant

- AB40 is more abundant but AB42 is more amyloidogenic and neurotoxic
- occur near b-secretase sites (increase AB levels), γ -secretase (increase AB42), α -secretase (decrease a-secretase activity or affect aggregation)
- o protective mutation near b-secretase- A673T carriers have better cognition scores than non-carriers
- o APP (21), presenilin 1 (14), presenilin 2 (1), duplication of APP
 - APP has a direct causal role in AD
 - presenilin (γ-secretase complex) mutations promote increase in AB42 production
- AB is toxic- decreases cell viability, decreases LTP and causes synaptotoxicity (loss of spines from neurites)

Tau

- tau is a microtubule binding protein which interacts with tubulin to stabilize microtubules and regulates axonal transport
 - o affects transport of motor proteins dynein and kinesin along microtubules
 - o can bind to mt and modulate interaction between microtubules and mt
- tau phosphorylation state determined by balance of kinase-phosphatases
 - tau phosphorylation decreases with aging
 - o increased phosphorylation decreases interaction with microtubules
 - o hyperphosphorylated tau and truncated tau detach from microtubules > aggregate into NFT
- tau mutations- spread across the protein, can affect phosphorylation and splicing
- deposition of tau into NFT positive stages 1 to V1
 - o prodromal I-II: transentorhinal
 - o early to moderate III-IV: limbic
 - o moderate to late V-VI: isocortical
- rship between AB and tau
 - o sporadic AD starts with intraneuritic pretangle tau in lower brainstem
 - o tau pretangles develop into NFT from stage I onwards
 - o first plaques occur in the neocortex, after onset of tauopathy in brainstem
 - thus tau pathology (increased phospho-tau immunoreactivity, not NFT) precedes amyloid plaque pathology; this spreads thru the brain and correlates w clinical changes
 - a tauopathy possibly beginning in childhood (tau can aggregate by itself)
 - or exacerbation by AB after a given threshold level of AB is reached (AB accelerates NFT)
 - o tau is required for AB mediated toxicity
- changes in AD biomarkers over time
 - o increase in: AB deposition, CSF tau
 - o decrease in: CSF AB (bc retained in brain), hippocampal volume, glucose metabolism (neuronal loss)

Pathological hallmarks of AD

- oxidative stress
 - o increased production of ROS and RNS by mitochondrial dysfunction
- metal dyshomeostasis and oxidative stress- Amyloid plaques have high levels of copper, zinc and iron
 - Zinc: increased bulk Zn, but reduced synaptic Zn (bc in plaques > interact badly w receptors) > reduces synaptic function, cognitive decline
 - binds AB and can promote its aggregation into ThT-positive aggregates
 - can promote tau aggregation and phosphorylation