EDUC 261 STUDY NOTES

Week 1: Technology Integration as an Educational Imperative

Key drivers of technology Integration

1. Motivating and engaging learners

- Several studies indicate that using technology can increase motivation and engagement. However, we need to adopt a critical approach to using technology in education. For instance:
 - Moving beyond the myth of 'digital natives'
 - Avoiding 'technological determinism'

2. Access to learning

Resources etc

3. Improve learning outcomes

- Personalized learning pathways
- Collaborative learning
- Data collection and representation
- Active learning
- Authentic assessment
- Catering to special needs
- Communication outside the classroom
- Simulations and gamification
- Intelligent feedback
- Peer support networks

4. Digital learning skills

5. Curriculum and policy documents

 ACARA includes 'Information and Communication technology capability' as one of the seven general capabilities

TPACK Model (Technology Pedagogy and Content) and its Implications

TPACK issues

- Research indicates that design tasks are an excellent way to develop TPACK capabilities
- Instruments have been developed to measure TPACK, however, there are concerns regarding;
 - Whether the components of the model can be clearly distinguished
 - Whether self reporting is an accurate way to measure TPACK
 - Whether quantitative measures are adequately explanatory
- Limitations of the TPACK model include;
 - It provides no guidance on how to effectively design learning tasks
 - It is general and so is not tailored for particular disciplines or contexts
 - It measures knowledge and not practise

Note:

- TPACK is a useful conceptual framework for considering the interconnected dimensions of technology, pedagogy and content that are needed for designing technology-enhanced learning activities
- We should adopt a critical perspective of TPACK in practice, using it judiciously and understanding its limitations

Week 2: Pedagogies of Technology Enhanced Learning

Pedagogy can operate at different levels

- 1. Perspectives (theories/paradigms): "I adopt a constructivist pedagogy in all of my classes"
- 2. Approaches: "I used problem-based learning tasks for students to understand the laws of motion"
- 3. Strategies: "I deconstructed the process into steps so students can understand how to complete it"

Pedagogical perspectives

- 1. Behaviourism
 - Learning is a chance in overt behaviour
 - Changes in behaviour are the result of an individual's response to events that occur in the environment
 - Implication: practise should take the form of question (stimulus) answer (response) - with associated feedback to expose students to the subject in gradual steps
- 2. Cognitivism
 - Focuses on what happens in the mind, for instance, stages of cognition required for learning; capturing attention, selection, retrieval, comprehension, synthesis, memorising, abstraction
 - Implication: learning should be designed to account for the stages of cognition
- 3. Constructivism