
Worksheet 1: Introductory Exercises
Turtle Programming
Calculations
The Print Function
Comments
Syntax
Semantics
Strings
Concatenation
Quotation Marks
Types
Variables
Restrictions on Variable Names
Long Lines
The Input Function

Worksheet 2: Numerical Expressions
Expressions
A Few Types of Type
Integers (Int)
Floats
Mixing Integers and Floats
Scientific numbers
Checking the type of a value
Type Conversions

Worksheet 3: Conditionals
Booleans
Relational Operators
String Comparisons
Substrings
Logical Operators
Ranges
Conditional Blocks

Worksheet 4: Sequences
Sequences
Strings as Sequences
Indexing
Slicing
Slicing with Steps and Directions
Extension to Lists
Extension to Tuples

Worksheet 5: Basic Functions
Function
Basic Anatomy of a Function Definition
Multi-Parameter Functions

Worksheet 6: Basic Methods
Methods
The Format Method
Formatting Floats
Formatting Different Types
Formatting Keywords

Worksheet 7: Review
Python Data Model
Converting Between Types

Worksheet 8: Iteration
Iteration
While Loops
Breaking While Loops
For Loops
While vs For Loops
Modulus: Checking Whether a Number is a

Multiple
Assignment Operators
isdigit(): String Method

Worksheet 9: Mutability and
Advanced Lists
Mutability
Mutables Inside Immutables
Mutability and Assignment
Mutability in Functions
Useful List Methods
Iterating Over Lists
Extracting a List of Words from Strings
String Method: isalpha
Sorting
The Sort Method

Worksheet 10: PEP8
PEP8
More on Naming
More on Commenting
Inline Comments
Online Style Checkers

Worksheet 11: Dictionaries and Sets
Dictionaries
Indexing Dictionaries
Dictionary Methods
Updating Dictionaries
Testing Dictionary Membership
Accessing all Keys
Accessing all Values
Accessing All Keys and Values
Further Notes Regarding Dictionaries
Counting with Dictionaries
Character Histogram
Sorting Tuples
Sets
Useful Set Operators
Useful Set Methods

Worksheet 12: Advanced Functions
None Type
The Max Function
Non-Returning Functions
Returning More Than One Value
Avoiding Return Errors
Returning on Time or Lazy Execution
Namespaces: Global and Local
Namespaces for Functions in Functions
Assigning to Global Functions
Global Constants
Call by Object

Worksheet 13: Libraries, Nested
Loops and 2D Data
Libraries
The Math Library
Different Ways of Importing
Default Dictionaries
Nested Loops
2D Data
Representing 2D Data in Python

Worksheet 14: Image Processing
Introduction to Pillow
Image Objects
Mode
Size
Accessing Pixels
Changing Pixels
Saving an Image
Looping Through Pixels
Manipulating Images
Unpacking Coloured Tuples
Transforming Images
Resizing an Image

Worksheet 15: List Comprehensions
List Comprehensions
List Comprehensions with Conditions
Iterators
The Value of Iterators
Iterators vs For Loops
Moving Forwards, Not Backwards
Iterators vs Sequences
itertools: Permutations
itertools: Combinations
Combinations: Why Tuples, Not Sets
itertools: Cycles

Worksheet 16: File IO and CSV Files
Files and File IO
Opening Files
Closing Files
Reading Files
Reading Files a Line at a Time
Appending to Files
Writing Files
Creating Files
The CSV Format
The CSV Library
Column Headings
Processing CSV Data
CSV Files as 2D Data
Naming Elements of a Row
Writing CSV Files

Worksheet 5
Basic Functions

Function
A function is a nice shorthand for a formula. It has an input, does something, ad produces and output.

• for example, we can create a formula for the number of standard drinks in a drink

std_drinks = volume * percentage * 0.789

Calculate the number of standard drinks contained in `volume`
of alcoholic drink `percentage` % of alcohol
volume = 0.375
percentage = 13.5
drinks = volume * percentage * 0.789
print(drinks)
3.9943125000000004

• this can be converted into a function that takes the inputs, volume and percentage and then returns the

standard drink for any variable

def std_drinks(volume, percentage):
 return volume * percentage * 0.789

print(std_drinks(0.375, 13.5))
print(std_drinks(0.586, 3.8))
print(std_drinks(1.5, 0))

3.9943125000000004
1.7569452
0.0

All functions have paramenters which are very similar to variables. The values inputed are arguments. The
expression after return is what the function will output. For example:

• parameters = volume, percentage
• argument = 0.375, 13.5
• output = volume * percentage * 0.789

Basic Anatomy of a Function Definition
The basic components of functions are:

• the function name;
• the parameters;
• the body, where the actual computation associated with the function occurs;
• some mechanism for returning a value and exiting the function.

- when using a returnstatement, the code stops and exits

For example, a function name would be as follows:

def my_first_function():

Parameters:

def my_first_function(num0, num1, num2):

Body, can be any code that makes use of the variables:

def my_first_function(num0, num1, num2):
 maxnum = num0
 if num1 > maxnum:
 maxnum = num1
 if num2 > maxnum:
 maxnum = num2

Return statement:

def my_first_function(num0, num1, num2):
 maxnum = num0
 if num1 > maxnum:
 maxnum = num1
 if num2 > maxnum:
 maxnum = num2
 return maxnum

Multi-Parameter Functions
Functions can be defined with multiple parameters using a comma to separate arguments.

• Must have different names unlike the following example:

def function(a, a, a):
return a

File "program.py", line 1
 def function(a, a, a):
 ^
SyntaxError: duplicate argument 'a' in function definition

• The ordering of the arguments will determine what function argument is set to what value

def swapped_sum(a, b):
 return b+a
print(swapped_sum("a", "b"))
print(swapped_sum("b", "c"))
ba
cb

• Functions can have no parameters and empty parentheses where any function call will have similarly

empty parentheses

def error_code():
 return -1
print(error_code())
-1

Worksheet 6
Basic Methods

Methods
Methods are unique functions that belong to specific data types. They are written and called differently to
functions.

• for example, the method upper() is only for str type and converts it to uppercase

my_str = "take the pie out of the oven"
print(my_str)
print(my_str.upper())
take the pie out of the oven
TAKE THE PIE OUT OF THE OVEN

or

print("goddamn it, it's burnt".upper())
GODDAMN IT, IT'S BURNT

The Format Method
The format method allows the formatting of str type.

num1 = 5
num2 = 6.7
print("The quotient of {} and {} is {:.2f}".format(num1,num2,num1/num2))
The quotient of 5 and 6.7 is 0.75

The following example uses the format method to generate a new string by substituting a value.

• the empty curly braces {} are used to tell the format method where to put the string

print("I own {} horses".format(10))
I own 10 horses

There is also the format string or f-string. The string is prefixed with f and variable names/statements are
directly inserted into the braces

• everything about the format method can apply to f-strings

Formating Floats
The float type can be formatted using curly brackets.

• for example, {:6.2f} tells format to use at least 6 characters in total and use exactly two digits after
the decimal point

pi = 3.1415926
what do you think < does?
print('{:<6.2f}'.format(pi)) # pad on the right
print('{:6.2f}'.format(pi)) # pad on the left
3.14
 3.14

Formating Different Types
Format also has the ability to embed different types (not just numbers) in strings like so

print("strings: {:s}".format("9743"))
print("binary number: {:b}".format(9743))
print("integer base 10: {:d}".format(9743))
Characters
print("Call me on my {:c}".format(9743)) # yes, it's a telephone

Formatting Keywords
Format insists on the colon before the format specification (e.g. .2f). If there is nothing before the colon,
Python will substitute in the arguments to format in sequence

• i.e. the first argument to format will be substituted for the first occurrence of curly braces, the second for
the second, etc.

• you can also, index the arguments to format in the same way that you index the elements of a list, for
example:

print("{0} {0} It's off to work we go".format("Hi Ho!"))
Hi Ho! Hi Ho! It's off to work we go

You can also name the arguments to format using keywords for example:

print("""{t1} and {t2}
 Agreed to have a battle;
For {t1} said {t2}
Had spoiled his nice new rattle.""".format(t1="Tweedledum",

t2="Tweedledee"))
Tweedledum and Tweedledee
 Agreed to have a battle;
For Tweedledum said Tweedledee
 Had spoiled his nice new rattle.

