Pathogenesis of Bacterial Infection

Lecture 1: genetic approaches to studying pathogenesis

pathogens and commensals

- · pathogen: organism capable of causing disease
- commensal: (normal flora) able to live in association with another organism without causing damage
- · but in reality they exist along continuum from pathogen to commensal

what makes a pathogen?

- · must be able to replicate and survive
- · can often
 - gain access to, replicate in and persist at usually sterile sites in the body (blood tissues etc)
- colonisation and interact leads to host damage and dysregulation (disease)

infectious disease

- when there is level of damage which results in perturbation of homeostasis
 - this damage is determined by interaction of pathogen with host
- variability of disease depends on
 - particular host
 - · particular pathogen
 - · host microbiota

importance of host immune status

- host genotype affects both innate and adaptive immune responses
 - polymorphism in immune genes
 - MHC, toll-like receptors, cytokine genes
 - all subtly different in how each individual react to infection with differences in the immune genes
- immune response finely tuned between killing and not damaging host
 - limits pathogen replication spread and disease
 - sometimes host damage gives clinical manifestation of disease
 - strep pneumoniae replicates in lung but does not cause necrosis
 - induces inflammatory response that gives clinical symptoms of pneumonococal pneumonia

Pathogen-Host interactions

Pathogen-Host-Microbiota interactions

importance of microbiota

- critical for some GI infections
 - · clostridium difficile infection usually follows antibiotic treatment which clears gut microbiota
- · citrobacter rodentium (EPEC model) infections in mice
 - · gut microbiota alters infection outcome
 - · affects pathogen gene expression
 - · plays role in host immune response

citrobacter rodentium infections

- · C. rodentium in different mice:
 - · HeJ mice get lethal infection
 - · NIH mice no mortality
- HEJ AND NIH mice have different gut microbiota profiles
- · microbiota transplant changes susceptibility

what are virulence factors

- · factors that bacteria it expresses that allow it to cause damage in host
- factor is the gene product (protein polysaccharide)
- · gene encodes virulence factor

virulence factors

- · pathogens are special because:
 - gain access to sterile sites, replicate and persist at these sites causing damage
- virulence factors are those factors that facilitate pathogenesis
 - multiple factors for single pathogen
 - · expression of particular factors often dependent on host interaction

true virulence factors

- · cause host cell damage
 - toxins (cholera, anthrax, botulinum and tetanus)
- facilitate colonisation (gain access to sterile sites)
 - adhesins, pili, flagella, invasins
- avoidance of immune system (allowing persistence)
 - polysaccharide capsules

accessory virulence factors

- · factors involved in acquisition of nutrients at low levels in host
 - · proteins for scavenging nutrients such as irons, amino acid and carbs
 - · siderophore
- · factors for secretion of virulence factors
 - Type III secretion system etc.
 - · also secrete non-virulence factors
- factors for regulated expression of virulence factors
 - · may also regular non virulence factors

the virulence continuum

- some factors difficult to define
 - e.g. acquisition of nutrients common to pathogens and non pathogens but important to host
 - · may be virulence in one host but not other

housekeeping genes virulence lifestyle true virulence

←

General metabolic genes

Secretion systems Regulators of virulence Toxins Colonisation factors Host defense evasion

why study these factors?

- if you're not sure if it's virulence factor:
 - if you have bacteria, knock out the gene you think is virulence factor and bacteria can still
 grow in lab however cant infect anymore = virulence factor
- · expression of these are associated with how cause disease
- · learn ways to stop this process happening
 - · drug and vaccine targets
- vaccines
 - against virulence factors
 - e.g. toxoid vaccines = diphtheria and tetanus
 - toxoid = activated toxin still recognised by host but doesn't hurt host
 - · e.g. capsule toxin
 - · H. influenzae, S. pneumoniae

experimental system

- need systems for studying both:
 - · bacteria which causes disease
 - bacteria/host interaction which defines disease
- picking the bacteria
 - · where possibly study the organism which causes the disease
 - · often highly virulent strains are more difficult to work with
 - · precautions to avoid disease
 - · often genetic systems less well developed
 - · sometimes are difficult to culture
 - · may be multiple strains
 - · different disease symptoms and severity
- picking disease/host model
 - best to study natural microbe/host interaction
 - not possible for human disease
 - humans = reluctant subjects and are genetically variable
 - find appropriate animal or cell culture model
 - · animals genetically defined and cheap
 - may not show same disease as humans
 - may not be affected by same strains

the perfect animal model

- · display same disease signs
- · similar tissue distribution of bacteria
- · acquired by same route as natural disease
- strains more virulent for humans should also be more virulent in animal model
- rare all achieved
 - does model give you useful insights into disease?
- · example:
 - S. typhi
 - · causes typhoid fever in humans, avirulent in mice
 - S. tvphimurium
 - causes mild non systemic disease in humans, but typhoid like disease in mice

differences in disease syndrome

- use of similar but not identical systems:
 - · advantages: you will learn about similar disease
 - · disadvantages: not same disease
- recent advances in making humanised mice may improve some infection models