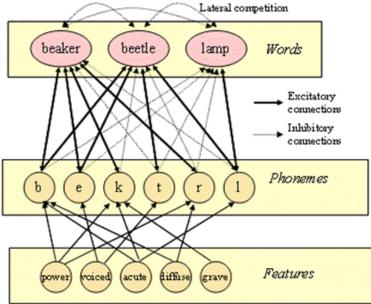

Lecture 3 - Principles of Word Recognition

Spoken word recognition

- 1. Prosodic cues
 - a. Metric rhythm
 - i. Help identify potential words within speech stream
 - ii. Infants tune to regularities in stress-patterns of native language
 - 1. 7.5 month
 - a. English-learning infants
 - i. Segment trochaic words, not iambic words
 - iii. Trochaic
 - 1. Strong-week pattern
 - 2. 90% of English multi-syllabic words
 - iv. Iambic
 - 1. Weak-strong pattern
 - 2. Polish
 - All languages contain words of both kind, one pattern typically predominates
- 2. Transitional probabilities

v.

- a. The likelihood that any given syllable follows another differs within words, and across word boundaries
- b. Saffran et al. (1996)
 - i. 8-month-old infants
 - ii. Learn word-like, 3-syllable, unit
 - 1. Play 2-minute strings of computer synthesised speech that contained no prosodic units
 - a. Breaks
 - b. Pauses
 - c. Stress differences
 - d. Intonation contour
 - 2. Transitional probability were 1.0 among the syllable contained in 4 pseudowords
 - 3. Transitional probably of adjacent syllables = .33
 - iii. Tested for listening preferences using head-turn procedure
 - 1. Blink lights above speakers attract infant's attention
 - 2. Infant's head turns towards light
 - a. Word/part-word repeated until infant look away
 - 3. Total looking time measured

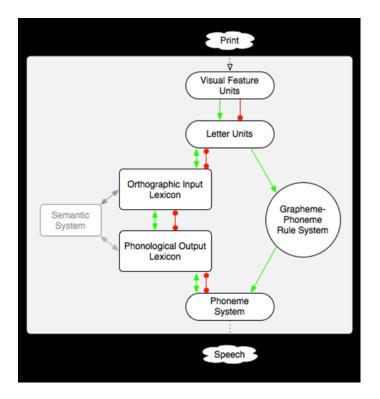

4. Prefer part-words

a. Unfamiliar

- 3. Pre-lexical cues summary
 - a. Prosodic cues & transitional probabilities
 - b. Provide information regarding likely word boundaries prior to lexical access
 - c. Based on the ability of our brains to tutne into the statistical properties of speech stream

Lexical cues

1. The TRACE model of spoken word recognition


- a. Nodes
 - i. Elements of information within the system
 - ii. Hold a resting level & threshold for activation
 - iii. Input consistent with node
 - i. Activation level of node rises from resting state towards threshold
 - iv. Highly interconnected
 - i. When a node reaches threshold, it may influence other connected nodes
- b. Layers
 - i. Phonetic features
 - ii. Phenoemic level
 - iii. Word level
- c. Active node
 - i. Excitation
 - i. Raise level of activation of nodes that are consistent with it
 - ii. Inhabitation
 - i. Lower level of activation of nodes that are consistent with it
- d. Excitatory activation
 - i. Bottom-up
 - i. Flows upwards through layers of system
 - ii. Top-down
 - i. Feedback
 - ii. Flow back down through layers of system
- e. Lateral inhibitory
 - i. Inhibitory connection
 - ii. Enable a node to supress activation of a competing node
- 2. Lexical feedback
 - a. Co-articulation of phenomes
 - i. Causes the same phenome to be pronounced differently depending on the context of the surrounding phonemes
 - b. Feedback from lexical level
 - i. Provides mechanism to resolve ambiguity in spoken word recognition
- 3. Parallel activation

- a. Lexical access process began when previous word is not finished
- b. Speech evaluated & re-evaluated continuously against numerous potential lexical candidates, activated in parallel
- 4. Lateral inhibition
 - a. Parallel activation
 - i. Causes multiple lexical 'candidates' to be activated as words are identified
 - ii. Gradually building activation for a set of lexical candidates in parallel over time
 - b. As activation accumulates in multiple lexical nodes
 - i. Nodes compete via lateral inhibitory mechanisms

Written word recognition

- 1. Phonemic awareness
 - a. Ability to perceive & manipulate the sounds of spoken language
 - b. Explicitly knowledge of phonemic structure of spoken language
 - c. Reading alphabetic orthography
 - i. Requires explicit analysis of spoken language into its smallest components phoneme
 - d. Distinguished from implicit knowledge
 - i. Underpins ability to recognised spoken words that differ by a single phoneme
 - e. Learnt in conjunction with alphabetic principle
 - i. Letters used to represent speech sounds
 - ii. Grapheme-phoneme correspondence
- 2. Phonological recoding
 - a. Reading
 - b. Phonemic awareness + alphabetic principle
 - i. Enable reader to pronounce a word they have not seen in print before
 - c. Enables a beginning read to
 - i. Decode the orthographic forms to gain access to the thousands of words already in their phonological lexicon
- 3. Orthographic depth
 - a. Regular words
 - i. Follow spelling-sound correspondence rules
 - b. Irregular words
 - i. Break the usual spelling-sound rules
 - ii. Must be recognised on the basis of their unique spelling pattern
 - c. Novel words
 - i. Must use the rules, or an analogy to a similar word, to produce a candidate pronunciation
- 4. Frequency effect
 - a. Frequently encountered words are read more quickly
- 5. Regularity effect
 - a. Irregular words are read more slower
- 6. Frequency \times regularity interaction
 - a. Regularity affect low frequency words more than high frequency words
- 7. The Dual-route model of reading
 - a. Lexical route
 - i. Recognising familiar words rapidly
 - 1. On the basis of a stored lexical orthographic representation for the whole word
 - ii. Necessary for irregular words
 - b. Non-lexical route
 - i. Knowledge of rules for translating letter into sounds

- 1. Grapheme-phoneme-conversion rules
- ii. Phonological recoding of unfamiliarly words
- iii. Irregular words regularised / mispronounced
- 8. Dual-route-cascaded model
 - a. Dual-route model implemented as computational model by Coltheart et al.
 - b. When word encountered in print
 - i. Automatically analysed in parallel by both routes
 - ii. Familiar
 - 1. Faster lexical route
 - iii. No match in lexical route
 - 1. Regularised pronunciation
 - c. Regularity \times frequency interaction
 - i. Low frequency irregular words
 - 1. Slower in lexical route
 - 2. Gives time for a competing "regularised" pronunciation generated by non
 - lexical route
 - ii. High frequency irregular words
 - 1. Faster in lexical route
 - 2. Avoid significant interference from non-lexical route

