Stats & Research

How do we acquire knowledge?

Tenacity, authority, experience, reason and logic

Qualitative and quantitative

- Quantitative research question
 - o Effectiveness of intervention?
 - o Association between variables?
- Qualitative research question
 - O Meaning of phenomenon or experience?
- Mixed Research Methods Question
 - o Generalise findings to population and understand meaning?
 - o Qualitative and quantitative
- Assumptions
 - Positivism → quantitative
 - Constructivist → qualitative

Positivist assumptions

- Causes determine effects
 - Experiments examine cause and effect (probability)
- Reductionist
 - o Hypotheses (directional or non-directional)
- World works via orderly laws
 - o Scientific method verifies and tests theory
- · Premium on objectivity
 - o Validity and reliability of methods

Constructivist assumptions

- · People construct meaning as they interact with the world
 - o Open-ended questions allow expression of views
- View world through historical and cultural lenses
 - Understand context and interpret it → acknowledge researcher's experience
- Meaning-making is social
 - \circ Data collection/analysis inductive \rightarrow based on data

Qualitative → e.g. case studies

Quantitative > e.g. ANOVA

Elements of scientific method

- Objectivity
- Confirmation
 - Replication
 - o Failure to replicate
- Self-correction
- Control

Confirmation bias

- Search for info consistent with view, ignore inconsistent
- Impact on researcher
 - o Literature reviews → show studies that confirm but not the ones that failed

Goals of science

- Describe behaviour
- Predict "
- Determine causes "
- Understand and explain "
- Apply knowledge to solve problems

Research process

• Find problem and review literature

- · Role of theory
 - Theories used to make hypothesis
 - Test hypothesis to develop theory
- Design and conduct experiment
- · Analyse and interpret data
- Share results → reports, presentations

Ethics

- Scandals in psych regarding research ethics
- Data irregularities
 - o Brian Wansink
 - Michael LaCour
- External data sleuth: Uri Simonsohn
 - Search for patterns in data that are suspicious

Stapel debacle

- Diederik Stapel
 - o 2011: suspended for fabricating data and other scientific misconduct
 - o 55 publications affected

Variables and descriptive stats

Stats

- Organise
 - Stats allow us to organise data to make it easier to understand
- Describe
 - o Stats allow us to summarise data in sensible ways
- Analyse
 - o Allow us to make inferences about patterns of behaviour e.g. compare stats before and after teaching

Variables

- What are the variables?
 - o Conceptual (e.g. self-esteem) vs operational (make it measurable e.g. self-esteem scale) distinction
- What type of variables?
 - Categorical vs continuous
 - Manipulated vs measured

Independent variable (IV) – what you manipulate Dependent variable (DV) – what you measure

Nominal scale

- Each category has own unique identity e.g. categorical data
- Can only make same-different comparisons

Ordinal scale

- Levels of scale can be ordered according to whether they are higher/lower/same
- Can make same-different and greater than-less than

Interval scale

- Units equally spaced over scale but no absolute zero (i.e. no absence of the quantity)
- Can make same-different, greater than-less than, equal intervals

Ratio scale

- Units equally spaced over scale and there is absolute zero
- Same-diff, greater-less, equal intervals, ratios

Scales of measurement

Scale	Features	
Nominal	Same vs. Different	Qualitative
Ordinal	Same vs. DifferentGreater than / Less than	Categorical Discrete
Interval	Same vs. DifferentGreater than / Less thanEqual intervals	Quantitativ
Ratio	 Same vs. Different Greater than / Less than Equal intervals Absolute zero (allows ratios t 	Continuous to be formed)

Describing data

- Frequency distribution order scores and tabulate frequencies
- Distributions diff shapes

- **Histogram** graph of frequency distribution
- Measures of central tendency
 - Mode score with highest frequency
 - May not be unique (e.g. bimodal), may not exist (e.g. rectangular)
 - o Median score divides distribution into two roughly equal parts
 - For ordered scores, (N+1)/2
 - Not affected by outliers but not sensitive to all scores
 - Mean balance point of distribution
 - Sensitive to all scores

- **Deviation score** how far away a score is from mean $(X-\mu)$
 - o The sum of all deviation scores in set of observations is 0
- But very different distributions can have same mean
 - A less variance
 - B more variance
- Variance σ_x^2 measure of dispersion of scores about the mean
 - o All other things being equal, if one distribution has greater variance, it will be fatter and flatter

- Because of individual differences, there is variance due to factors other than what we are interested in →
 additional factors are called 'error' variance we try reduce this
- Standard deviation σ_x average distance each score deviates from mean \rightarrow square root of variance

$$\sigma_{X} = \sqrt{\frac{\Sigma(X - \mu_{X})^{2}}{N}}$$

- Sd is always positive as it is a measure of 'distance'
- o Mean and sd help us compare both within and across distributions

Linear transformations and z-scores

Z-scores – standard score that indicates relative standing in a distribution

deviation score for the ith person

z-score for the ith person

$$z_i = \frac{X_i - \mu_X}{\sigma_X}$$

standard deviation

• Z-score is how many standard deviations from mean a given observation falls

If $X < \mu$, z < 0

If
$$X = \mu$$
, $z = 0$

If
$$X > \mu$$
, $z > 0$

- Comparisons of relative standing across distributions are more meaningful if distributions have same shape
- In positively skewed distribution, e.g. having score on mean does not indicate same sort of relative standing as being on the mean in a negatively skewed distribution

Negative skew

Positive skew

• In psych, we assume most variables we measure are normally distributed i.e. bell-shaped

Normal distribution

Effects of transformation

- Adding a constant to each score does not affect variance BUT multiplying by a constant (other than +/- 1) does
- These are all linear transformations

Linear transformations

- Prevent acquiesce bias change direction of scale in answer e.g. 1 is good and then 5 is good in next question
- Linear transformations are used for e.g. mm to cm, or temp C to F
- Linear transformation does not affect shape of distribution (normal → normal, skewed → skewed)
 - Mean is transformed same way X scores are

$$\mu_v = a + b\mu_x$$

o Sd only affected by b

$$\sigma_{y} = |b| \sigma_{x}$$

Variance only affected by b

$$\sigma_{v}^{2} = b^{2} \sigma_{x}^{2}$$

Z-score does not change

$$Z_v = Z_v$$

The Normal Distribution

Z transformation