- o Light hits object, bounces off, scatters and then the human eye processes this
 - Objects reflect different percentages of incident light e.g. white paper 75%, black paper 5%
- Contrast
 - o Difference in light and dark between objects is how the eye can identify them
 - Michelson contrast
 - Where the L_{max} and L_{min} are the largest and smallest luminance values respectively
 - o Varies between 0 and 1

$$C = \frac{\left(L_{\text{max}} - L_{\text{min}}\right)}{\left(L_{\text{max}} + L_{\text{min}}\right)}$$

The eye

- The **cornea** is the transparent window through which light enters the eye
- It is curved and acts as a lens ¾ of focusing power comes from cornea, ¼ from the actual lens
- Lenses focus light onto the retina
- At least one curved surface, and made of substance that bends light when hit due to light travelling slower than it does through air

Figure 1.2 Horizontal cross-section through the human eye.

- Light travels at similar speeds through water and the cornea, therefore there is little deflection of light and focus is impossible
- A pair of goggles which insert an air-cornea boundary enable light to bend and the eye to see
- The chamber behind the cornea is filled with aqueous humour
- The **iris** is coloured and provides an adjustable aperture
 - When light levels are high, it constricts and pupil decreases in size to reduce amount of light passing through
 - When light is dim, iris relaxes and allows more light to pass
- Pupils dilate from excitement
 - When pupils constrict, the depth of focus increases
- Lens are adjustable, held between zonules of Zinn
 - This allows for accommodation i.e. focusing on objects of different distances from the eye
 - Focusing is recombining rays from various directions to form a single point on the imaging surface
 - When objects are far away, lens needs to be stretched and skinnier, achieved by tightening ciliary muscles
 - Close objects send diverging rays to the eye, so the lens needs to be fat and rounder to focus them on the retina, ciliary muscles relaxed

- Focusing Errors
 - o If this works, you are emmetropic
 - Short sighted (eye too long for optics) myopic
 - Diverging lens concave
 - Long sighted (eye too short for optics) hypermetropic
 - Converging lens convex
 - Presbyopia is the condition where our closest point we can focus on (near-point) gets progressively further away – reading glasses
 - Astigmatism different focal lengths for different orientations
- Behind lens is the main cavity of the eye, the vitreous humour which maintains shape of the eye and pins retina to back of eye
- The retina is a light-sensitive layer at the back of the eye, where visual processing really begins
 - Receptors are at the very back, where light travels through other neural matter before reaching them – an accident?
 - This leads to a **blind spot** in each eye, where ganglion cell axons converge and leave the eye

- Receptors are connected to bipolar cells which synapse with retinal ganglion cells
- The ganglion cells' axons carry information from the eye towards the visual cortex
- Photoreceptors in the eye: rods and cones
 - Rods contain the purple photopigment rhodopsin 'visual purple'
 - Respond well in dim light
 - Not useful in full daylight, with activity increasing as light levels increase
 - Scotopic vision
 - Most sensitive to green light
 - Cones
 - 'Red' cones contain photopigment sensitive to long wavelengths of light
 - 'Green' cones most sensitive to middle wavelengths
 - 'Blue' cones most sensitive to shorter wavelengths none in fovea
 - Overall most sensitive to yellow light
 - Responsible for daytime vision
 - Photopic vision
 - When vision is a combination of rod and cones, it is mesopic
 - Most concentrated in the fovea
- Ganglion cell selectivity
 - Each ganglion cell has a receptive field, the area over your retina where stimulation in that area changes the firing rate of that cell
- Receptive fields & acuity
 - Receptive fields for foveal vision are smaller and densely packed
 - o Further into the periphery, they are larger and less dense

- Larger cortical area for processing foveal vision than for peripheral i.e. more precision
- Eye to brain
 - Optic nerve → retinal receptive fields →
 crossover at optic chiasm → retinal ganglion
 cell axons terminate in Lateral Geniculate
 Nucleus (LGN)
 - Images seen in the left visual field travels to the right LGN & vice versa – partial decussation
 - Lesion of optic nerve causes loss of vision in one eye
 - Lesion of optic tract causes loss of vision of half the world - hemianopia
 - LGN projects to primary visual cortex (V1) in occipital lobe via optic radiations (paths it travels along)
 - Then V1 projects to other important extra-striate brain areas → V2, V3, V4 (colour),
 V5/MT (simple motion), MST (complex motion) these areas have specialisations,
 not exclusivity
 - Each area is retinotopic except MST adjacent cells have adjacent retinal receptive fields
 - As you progress along the processing stream, areas become more selective
 - Works in hierarchies but many connections are also lateral or backwards

Spatial Vision

- A lot of information is received by the ganglion cells, so the irrelevant information must be discarded and only important information retained to regulate data load to the brain
- Centre-Surround Antagonism (aka lateral antagonism, lateral inhibition, spatial opponency)
 - Ganglion cell RF has 2 concentric areas
 - ON Centre Cell
 - Light falling on inner portion causes excitation more ganglion cell activity
 - Light falling on outer portion causes inhibition less activity
 - OFF Centre Cell
 - Work in opposite manner
 - Tell us how dark an area is, help detect local luminance decrements
 - Optimal stimulus is a central spot of light on central zone, causing high activity levels
 - Light all over, or not light, causes only spontaneous activity
 - Stimulation of just the surround causes a reduction in firing rate
 - These processes are important for you to determine where changes are in an image – to

- exaggerate edges
- Allows compensation for intensity of light source
- Cells prioritise contrast, not the overall brightness
- Simultaneous Brightness Contrast Illusion
 - There is less inhibition of the on-centre cell in the square on the left, therefore more ganglion cell firing
 - o Thus, central square is perceived to be brighter
- Hermann Grid
 - Less noticeable closer to the fovea
 - More light at the intersections ie more inhibition (less firing) so makes it appear darker
 Less inhibition at white bars, so it appears brighter
- Why are grey patches more pronounced in periphery?
 - o RFs are larger at periphery
- LGN
 - Like ganglion cells with centre-surround antagonism
 - Concentric receptive field will produce the same level of response to lines of all orientations
 - o 6 major layers
 - All cells are monocular only take input from one eye
 - Layers 1, 4 & 6 from contralateral eye (on opposite side)
 - Layers 2, 3 & 5 from ipsilateral eye (same side)
 - Retina ganglion cells send signals to LGN
 - Large M cells (magnocellular) Low resolution, fast response, high sensitivity, process motion, coarse features, V5
 - Small P cells (parvocellular) High resolution, slow response, low sensitivity,
 R-G colour, finer features, V4
 - Koniocellular (between M/P layers) unclear purpose, process blue/yellow colour?

Lecture 6

- Optical imaging is an invasive method to observe activity in V1
- Selectivity for orientation many channels selective to different angles
- Selectivity for eye-of-origin
 - Ocular dominance ranges 1-7
 - o 1 & 7 monocular
 - Others binocular (2-6)
 - o Binocular neurons have a role in estimating depth
- V1 Cell Properties
 - Orientation tuning cells respond to edge or bar with a preferred orientation within its RF, with activity reducing as orientation departs from preferred
 - o Range of orientation which cell fires to is a measure of its bandwidth
 - Small bandwidth → sharp tuning
 - Large bandwidth → broad tuning
 - Similar to auditory filters, olfactory receptors etc.
- V1 Organisation ("ice cube model")
 - Organised into orientation column in a column, cells have same preferred orientation
 - Columns of ocular dominance in a column, cells take inputs from same eye

