
Table of Contents

Week 1 – Software Development 2

Software Eng Life-Cycle Development Phases 2

Methodologies ... 2

Week 2 - XP, Scrum, Agile 3

Extreme Programming (XP) .. 3

Values of XP Programming 3

XP Principles ... 3

XP Planning Game .. 3

Agile .. 4

Agile Requirements Engineering 4

User Stories .. 4

Capturing the Components of a US 4

I.N.V.E.S.T – US Quality Control 4

Week 3 – Requirements Engineering, Use-

Case Modelling ... Error! Bookmark not defined.

Types of requirements .. Error! Bookmark not defined.

Use Cases Error! Bookmark not defined.

Use Case Generalisation Error! Bookmark not defined.

<<Extend>> Use Cases... Error! Bookmark not defined.

Sequence Diagram Error! Bookmark not defined.

Activity Diagram Error! Bookmark not defined.

Week 4 – Domain Modelling using OO

Design Techniques Error! Bookmark not

defined.

Use Case vs. Domain Model Error! Bookmark not

defined.

OO Design Error! Bookmark not defined.

Abstraction Error! Bookmark not defined.

Encapsulation Error! Bookmark not defined.

Relationships Error! Bookmark not defined.

Association Error! Bookmark not defined.

Week 6 – S.O.L.I.D Principles, Agile Design,

and UML Error! Bookmark not defined.

S.O.L.I.D Principles Error! Bookmark not defined.

UML Diagrams Error! Bookmark not defined.

Elements of a Class Diagram Error! Bookmark not

defined.

Detailing the Classes Error! Bookmark not defined.

Sequence Diagram Error! Bookmark not defined.

Week 7 – Software Architecture Error!

Bookmark not defined.

Architectural StylesError! Bookmark not defined.

Data Centred architecture Error! Bookmark not

defined.

Pipe and Filter Architecture Error! Bookmark not

defined.

Client-Server Architecture Error! Bookmark not

defined.

Publish-Subscribe Architecture Error! Bookmark not

defined.

Service Orientated ArchitectureError! Bookmark not

defined.

Week 8 – DBS: Relational Model & SQL Error!

Bookmark not defined.

Relational Database Management System (RDBMS)

Error! Bookmark not defined.

More TerminologyError! Bookmark not defined.

Data ModelsError! Bookmark not defined.

Relational Data Model ...Error! Bookmark not defined.

ConstraintsError! Bookmark not defined.

Week 9 – ER Model........... Error! Bookmark not

defined.

Key ER design elements: Error! Bookmark not defined.

Between relationship sets: Error! Bookmark not

defined.

Line indication of participation: ... Error! Bookmark not

defined.

Weak entitiesError! Bookmark not defined.

Subclass and Inheritance Error! Bookmark not

defined.

Strong entities:Error! Bookmark not defined.

Multivalued entities:Error! Bookmark not defined.

Composite attributes:Error! Bookmark not defined.

Mapping relationships: ..Error! Bookmark not defined.

Week 11 – Exceptional Handling and

Software TestingError! Bookmark not defined.

Exception handingError! Bookmark not defined.

Types of errorsError! Bookmark not defined.

Other Testing Terminology Error! Bookmark not

defined.

Test CoverageError! Bookmark not defined.

Code CoverageError! Bookmark not defined.

Control-flow Testing Error! Bookmark not defined.

COMP1531 Notes

Week 1 – Software Development

Software Eng Life-Cycle Development Phases

1. Analysis and Specification

- Understand problem definition

- Determine functional (in/output) and non-

functional requirements (performance, security,

quality, maintainability, extensibility)

- Techniques : User stories/case modelling

2. Design

- Designing a solution blueprint to implement

customer requirements

- Techniques : UML, CRC, ER Modelling, Conceptual

Class Diagrams

3. Implementation

- Encoding design to deliver a software product

4. Testing

- Process of verification that system works and

realises goals

- Techniques : Unit Tests, User Acceptance Tests,

Integration Tests

Methodologies

Iterative – every iteration encompasses all phases of

software development

 Short iterations

 Heavy customer involvement

 Continuous feedback

Incremental – once a phase is finished, we do not go

back

 Documentation heavy

Waterfall

Linear ‘plan driven’ development model with detailed

planning. Suitable for simple, risk free projects with

unchanging product statements or mission critical

applications (e.g. NASA); heavy documentation.

 Linear sequential of all 4 dev phases

Model variation – quality gate system that ensures

quality is maintained throughout the lifecycle.

Rational Unified Process (RUP)

Iterative software dev process that has a series of four

phases that all possess their own software eng life-

cycles:

1. Inception – scope the project and identify major

players, resources, architecture and risks, and

cost.

2. Elaboration – understanding problem domain

and analysis.

3. Construction – design/build/test software

4. Transition – release into production

 Agile

Software is built in iterations; all four dev phases are

implemented in each iteration.

 Open to change at every stage of the process.

 Continuous customer involvement/feedback

Figure 1 Waterfall model variation

Week 2 - XP, Scrum, Agile

Extreme Programming (XP)

‘Design and code for today and not for tmr’

XP intends to improve software quality and

responsiveness to changing customer requirements

through short dev cycles; high focus on adaptability

(changing requirements) rather than predictability

(laying out all the requirements at the beginning).

Boehm’s Cost Curve – as software dev proceeds through

its lifecycle, the cost of making changes will grow;

warning to be prepared for changes. Look out for:

 Improper design that increases complexity

 Code duplication

 Budgeting resources “cost of making vital changes

exceeds resources”

Values of XP Programming

1. Communication – increased collab btw

customers and developers; and among team

members

2. Simplest Solution – focus on design and coding

needs for today to avoid spending resources on

uncertain future requirements

3. Feedback – from system (periodic

unit/integration test), customer (user

acceptance test), and team

4. Courage – be comfortable with refactoring code

for better solutions and transparent team

communication

5. Respect – never commit changes that fail tests;

strive for quality

XP Principles

1. Pair programming

2. Continuous Integration Checks

3. Open Workspace

4. Test-Driven Development – periodic unit /user

acceptance testing to ensure low coupling and

high cohesion

5. Refactoring – reconstructing the code without

changing external behaviour to improve non-

functional attributes

6. Sustainable Pace – program for today not for

tomorrow

Extras:

 Simple design – focus on the stories of the current

iteration to keep design simple and expressive

 Constant feedback – from team and customers

 System Metaphor – figure of speech that

summarises the system into layman’s terms for

everyone to understand

XP Planning Game

Initial Exploration

Conversation between customer and devs to identify all

significant features (more will be discovered later).

- Break down epic stories into user stories

- Estimate velocity via approx number of stories

doable in each iteration

- Cost of each user story is extrapolated from project

velocity

Release Plan

Plan a release date (6/12/24 months in the future) with

customer and which stories are critical for the planned

date. Can be planned by:

- Time – how many user stories can be implemented

before given date

- Scope – how long a set of stories will take to finish

Negotiate with all plan devs/customer/ and manager to

not underestimate scope of work.

Iteration Planning

Create iteration plans (typically 1~ 2 weeks).

- Customer to prioritise user stories; must fit current

velocity

- Stories cannot change once iteration begins

- Iteration ends even if not all stories are done

- Story is not done until all acceptance tests pass

Task Planning

User stories are broken down into tasks with estimated

time for completion and implementation order is

determined. Time is summed up and if it is too much,

customer must choose stories to cull.

When should it be used?

- When problem domains are uncertain and open to

change

- Customer do not have firm idea of product

- Ideal project group sizes of 2 – 12

Agile

Requirements engineering is formulating a well defined

problem to solve. Traditional phases of requirements

engineering:

 Requirements gathering – get understanding of

problem through customers and stakeholders

 Requirements analysis – defining the problem

through gathered info, negotiate with customer to

determine priorities, ensure devs and customer

problem matches.

 Requirements specification – documentation to

ensure clarity (e.g. UML to model use cases)

Agile Requirements Engineering

1. Visioning – identify:

- Theme or epic stories of the project.

- Target users

- Key selling points of the product (3-5 objectives)

2. Brainstorm the features of the epics

3. Breakdown into smaller user stories

4. Detail user stories to yield iteration deliverables

5. Finalise product backlog (list of US that needs to

be done)

User Stories

Key to user stories is to focus on who, what, and why:

‘As a <type of user>, I want <some goal> so that <some

reason>’

Capturing the Components of a US

Card – a post-it-note as a physical token giving tangible

form of what would otherwise be an abstraction

Conversation – Taking place at different time and places

during the project with various people that is largely

verbal but is supplemented by documentation

Confirmation – devs getting confirmation regarding

acceptance criteria from product owner to get a clear

understand of how the feature will work under different

situations

I.N.V.E.S.T – US Quality Control

Independent – US should be developed independently

and delivered separately

Negotiable – US should be discussable further

Valuable – product owner should be clear on ‘why’

Estimable – should be understandable enough that it can

be broken up into tasks to be estimated and delivered

