Basic Econometric Revision

Topic 1: Basic Linear Model (page 1-17)
Topic 2: Dummy Variables (page 18-26)
Topic 3: Heteroskedasticity (page 19-34)
Topic 4: Autocorrelation (page 35-45)
Topic 5: Non-Stationary Time Series (page 45-54)
Topic 6: Models for Count Data (page 55-61)
Topic 7: Binary Outcomes (page 62-76)
Topic 8: Stochastic Regressors (page 77-92)
Topic 9: Linear Panel Data (page 93-98)

Topic 1 Basic Linear Model (Lecture 2-7)

1) Introduction

- Economic theory describes average behaviour of many individuals: identifies relationships between economic variables; make predictions about direction of outcomes when a variable is altered
- Dependent variable: y
- Explanatory variables: $\mathrm{X}=\mathrm{x} 1, \mathrm{x} 2, \ldots ., \mathrm{xk}$
- Unknown parameters: β_{i}
- Error term: ε_{i} (any factors other than X that affect y and are not included in the model: i.e. assumed linear function form; unpredictable random behaviour)
- Linear equation: $y_{i}=\beta_{0}+\beta_{1} X_{1 i}+\beta_{2} X_{2 i}+\cdots+\beta_{k} X_{k i}+\varepsilon_{i}$

2) Economic model

$$
y_{i}=\beta_{0}+\beta_{1} X_{1 i}+\beta_{2} X_{2 i}+\cdots+\beta_{k} X_{k i}+\varepsilon_{i}
$$

$>$ Intercept: $\beta_{0} \rightarrow$ average value of y when all the X 's are zero
$>$ Slope parameters: $\beta_{j} \rightarrow$ expected change in y associated with a unit change in X_{j}, all else constant

> Assumptions:

$>$ (1) Correct model is $y_{i}=\beta_{0}+\beta_{1} X_{1 i}+\beta_{2} X_{2 i}+\cdots+\beta_{k} X_{k i}+\varepsilon_{i}$
$>$ (2) $E\left[\varepsilon_{i} \mid x_{i}\right]=0$: error term has an expected value of 0 , given any value of X 's
$>\rightarrow E\left[y_{i} \mid x_{i}\right]=\beta_{0}+\beta_{1} X_{1 i}+\beta_{2} X_{2 i}+\cdots+\beta_{k} X_{k i}+0$
$>\rightarrow y_{i}=E\left[y_{i} \mid x_{i}\right]+\varepsilon_{i} ;$ systematic component of y "explained" by X ; a random component of y "not explained" by X
$>(3) \operatorname{VAR}\left[\varepsilon_{i} \mid x_{i}\right]=\sigma^{2}$: variance of random errors is constant and independent of the X 's \rightarrow Homoskedasticity
$>$ (4) $\operatorname{COV}\left[\varepsilon_{i}, \varepsilon_{j} \mid x_{i}, x_{j}\right]=0$ for all $\mathrm{I}, \mathrm{j}=1,2, \ldots \mathrm{~N}, \mathrm{i} \neq j$: any pair of random errors are uncorrelated
$>$ (5a) The explanatory variables are not-random (values of all X 's are known prior to observe the values of the dependent variable)
$>$ (5b) any one of the X^{\prime} s is not exact linear function of any other X 's
3) Lease Squares Principle
$>$ estimates $\left(\beta_{0}, \beta_{1}, \ldots, \beta_{k}\right)$ such that the squared difference btw fitted value and observed value of y is minimised \rightarrow why "Squared" ? so positive diff won't cancel out negative diff.
$>\left(b_{0}, b_{1}, \ldots ., b_{k}\right)$ are estimators, random variables; values for $\left(b_{0}, b_{1}, \ldots ., b_{k}\right)$ are least squares estimates
$>$ Fitted line: $\widehat{y_{l}}=b_{0}+b_{1} X_{1 i}+b_{2} X_{2 i}+\cdots+b_{k} X_{k i}$
$>$ Least squares residuals: $\widehat{e}_{l}=\left(y_{i}-\widehat{y_{l}}\right)=y_{i}-\left(b_{0}+b_{1} X_{1 i}+b_{2} X_{2 i}+\right.$ $\left.\cdots+b_{k} X_{k i}\right)$
$>$ Sum of Squared residual (RSS): $\sum_{i=1}^{N} \widehat{e}_{l}^{2}$
$>$
$>$ Note: since $\sum_{i=1}^{N} \widehat{e}_{l}=0 \& \sum_{i=1}^{N} \widehat{e}_{l} X_{1 i}=0 \ldots . . \sum_{i=1}^{N} \widehat{e}_{l} X_{K i}=0$
\Rightarrow Implies $\sum_{i=1}^{N} \widehat{e_{l}} \widehat{y_{l}}=\sum_{i=1}^{N} \widehat{e}_{l}\left[b_{0}+b_{1} X_{1 i}+b_{2} X_{2 i}+\cdots+b_{k} X_{k i}\right]=0$

```
> >}\mathrm{ sum of "product btw fixed value and residue" is 0
```

4) Statistical properties

- Sampling distribution of the OLS estimators: Mean and variances of $\left(b_{0}, b_{1}, \ldots, b_{k}\right)$
- Mean; If:
- $E\left[b_{j}\right]=\beta_{j}$, for $\mathrm{j}=1,2, \ldots, \mathrm{~K}$ with the assumption $E\left[\varepsilon_{i} \mid x_{i}\right]=0$ for all $\mathrm{i}=1,2, \ldots, \mathrm{~N}$ hold
- $E\left[b_{0}\right]=\beta_{0}$
- Then:
- the estimator is said to be unbiased
- Variance: $\operatorname{VAR}\left[b_{j}\right] \& \operatorname{COV}\left[b_{j}, b_{k}\right]$ with the following assumptions hold:
- $\quad E\left[\varepsilon_{i} \mid x_{i}\right]=0$ for all $\mathrm{i}=1,2, \ldots, \mathrm{~N}$
- $\quad \operatorname{VAR}\left[\varepsilon_{i} \mid x_{i}\right]=\sigma^{2}$
- $\operatorname{COV}\left[\varepsilon_{i}, \varepsilon_{j} \mid x_{i}, x_{j}\right]=0$
- X's are not random
- unbiased estimator that has a higher prob. of getting an estimate "close" to β_{j}
- The lower the variance of an estimator, the greater the sampling precision of the estimator
- Factors affecting Variance of OLS estimators:
- (1) a larger σ^{2} raises $\operatorname{VAR}\left[b_{j}\right]$
- (2) greater dispersion in values of X measured by term $\sum\left(X_{j i}-\bar{X}_{J}\right)^{2}$ lower the variance of $\operatorname{VAR}\left[b_{j}\right]$

$$
\begin{aligned}
& \text { low variation in } x_{j} \\
& \text { nigher var }\left[b_{j}\right]
\end{aligned}
$$

$$
\begin{gathered}
\text { high(er) variatioi in } x_{j} \\
\text { lower var }\left[b_{j}\right]
\end{gathered}
$$

- (3) Larger sample size lower VAR $\left[b_{j}\right]$
(4) Larger correlation raises $\operatorname{VAR}\left[b_{j}\right]$

5) Gauss-Markov Theorem

> Under the assumptions of the linear regression model (1--5b), the OLS estimators $\left(b_{0}, b_{1}, \ldots, b_{k}\right)$ have the smallest variance of all linear and unbiased estimators of $\left(\beta_{0}, \beta_{1}, \ldots, \beta_{k}\right)$ OR the Best linear unbiased estimators of ($\beta_{0,}, \beta_{1}, \ldots, \beta_{k}$)

- the assumptions must be true for Gauss-Markov holds
- Unbiased Estimator of the error variance: $\widehat{\sigma^{2}}=\frac{\sum_{i=1}^{N} \widehat{e}_{L}^{2}}{(N-K-1)}=\frac{R S S}{(N-K-1)}$ where $K+1=$ no. of parameters being estimated
$>$ Note: In Eviews: \rightarrow S.E of regression $=\hat{\sigma} \quad \rightarrow \widehat{\sigma^{2}}=\hat{\sigma}^{\wedge} 2$
$>\quad \rightarrow$ Sum Squared resid $(\mathrm{RSS})=\sum_{i=1}^{N} \widehat{e}_{\imath}^{2} \rightarrow \widehat{\sigma^{2}}=\frac{R S S}{(N-K-1)}$
$>$ RSS: residual sum of squares
> TSS: total sum of squares
$>R^{2}=\frac{\sum\left(\hat{y}_{l}-\bar{y}\right)^{2}}{\sum\left(y_{i}-\bar{y}\right)^{2}}=1-\frac{R S S}{T S S}$, the variation in the dependent variable y about its mean that is explained by the regression model (how well the model fits the data)
$>R^{2}$ also measures the degree of linear association btw the values of y_{i} and the fitted values $\widehat{y_{l}} \rightarrow R^{2}=[\operatorname{CO} \widehat{R R(y, \hat{y})}]^{\wedge} 2$
$>0 \leq R^{2} \leq 1$,
> Interpretation: e.g. 21% of the variation in y is explained by variation in X 1 and X 2 .
$>$ where $y_{i}=\beta_{0}+\beta_{1} X_{1 i}+\beta_{2} X_{2 i}$
$>$ problem: R^{2} may be made bigger by including irrelevant X variables (no significantly related to y) ; Note: intuitively R^{2} cannot decrease as RSS cannot increase by adding more X variables (As RSS will decrease by adding more $\mathrm{Xs} \rightarrow$ so R^{2} will increase.)
$>$ Solution: measure the cost of imposing irrelevant explanatory variables

6) Unrestricted and restricted model

- Restricted model: restrict $\beta_{k}=0 \rightarrow$ one less X variable than the unrestricted model
- Minimisation problem: minimise the sum of squared errors (RSS is the minimised value of the objective function evaluated at the solution $b_{0}, b_{1}, \ldots ., b_{k}$
- Thus, $R S S_{R} \geq R S S_{U R}$ must hold: an extra factor might explain the model better so error decreases.
- \rightarrow adding one more regressor decreases RSS and thus increases R^{2}

$$
R S S_{R} \geq R S S_{U R} \rightarrow R_{U R}^{2} \geq R_{R}^{2}
$$

$>$ Adjusted \bar{R}^{2} : this measure does not always rise with additional X 's due to "degree of freedom" correction (N-K-1) \rightarrow as more X's are added, $\sum \widehat{e}_{l}^{2}$ decreases, but (N-K-1) also decreases.
$>\quad \bar{R}^{2}=1-\frac{\frac{\sum \widehat{e}_{l}^{2}}{N-K-1}}{\frac{\sum\left(y_{i}-\bar{y}\right)^{2}}{N-1}}=1-\frac{\hat{\sigma}^{2}}{\widehat{\sigma y}^{2}}$
$>\quad=1-\left\{\left(1-R^{2}\right) \frac{N-1}{N-K-1}\right\}$
$>$ The effect on \bar{R}^{2} depends on the reduction in $\sum \widehat{e}_{l}^{2}$ relative to (N-K-1).
$>$ In terms of $R^{2}: \bar{R}^{2}=1-\left\{\left(1-R^{2}\right) \frac{N-1}{N-K-1}\right\}$
$>$ When N is sufficiently small and K sufficiently large, the \bar{R}^{2} might be actually negative \rightarrow BUT! R^{2} cannot be negative when intercept is included in the model

7) Hypothesis testing I

(a) Adding normality: assumption of normality makes statistical inference much easier - assume $\varepsilon_{i} \sim N\left(0, \sigma^{2}\right)$ then: $y_{i} \sim N\left(\beta_{0}+\beta_{1} X_{1 i}+\beta_{2} X_{2 i}+\ldots \beta_{K} X_{K i}, \sigma^{2}\right)$

- If errors are normally distributed \rightarrow y's also be normally distributed (y's contains weighted sum of OLS estimators)
- so OLS estimators are weighted sums of normal variables for $\mathrm{j}=1,2, \ldots . . \mathrm{K}$

$$
\begin{gathered}
b_{0} \sim N\left(\beta_{0}, V A R\left[b_{0}\right]\right. \\
b_{j} \sim N\left(\beta_{j}, V A R\left[b_{j}\right]\right.
\end{gathered}
$$

$>$ OLS estimators will have normal distribution if N is sufficiently large

(b)Steps for Hypothesis testing

- formulate H_{0} and H_{A} specify a test
(null hypothesis is usually stated in terms of the magnitude or sign of β_{j} that we do not expect (based on economic theory)

$$
H_{0}: \beta_{j}=c, \quad H_{A}: \beta_{j} \neq c
$$

- test statistic (a r.v.)and its distribution when H_{O} is true

$$
t=\frac{b_{j}-\beta_{j}}{\operatorname{se}\left(b_{j}\right)} \sim t(N-K-1)
$$

- choose a level of significance and determine the rejection region
rejection region for 2 sided test: $\boldsymbol{t}>\boldsymbol{t}_{\boldsymbol{c}}$ ort $<-\boldsymbol{t}_{\boldsymbol{c}}$ where $P\left[t \geq t_{c}\right]=P\left[t \leq-t_{c}\right]=\frac{\alpha}{2}$ $\left[H_{A}: \boldsymbol{\beta}_{j} \neq \boldsymbol{c}\right]$
rejection region for 1 sided test: $\boldsymbol{t}>\boldsymbol{t}_{\boldsymbol{c}} P\left[t \geq t_{c}\right]=\alpha \quad\left[\boldsymbol{H}_{A}: \boldsymbol{\beta}_{j}>\boldsymbol{c}\right]$
rejection region for 1 sided test: $t<-t_{c} P\left[t \leq-t_{c}\right]=\alpha \quad\left[\boldsymbol{H}_{A}: \boldsymbol{\beta}_{j}<\boldsymbol{c}\right]$
- obtain the sample estimates for b_{j} and se $\left(\mathrm{b}_{\mathrm{j}}\right)$ apply the decision rule

$$
t=\frac{b_{j}-c}{\operatorname{se}\left(b_{j}\right)} \sim t(N-K-1)
$$

- state your conclusion

Rejection Region: Two-Sided Test

$H_{0}: \beta_{2}=c$ and $H_{A}: \beta_{2}>c$

Rejection Region: One-Sided Test

$H_{0}: \beta_{2}=c$ and $H_{A}: \beta_{2}<c$
Rejection Region: One-Sided Test

$>$ rejection of null $H_{0}: \beta_{j}=0$ implies there is a statistically significant relationship between X_{j} and y .

Step 1: identify the null hypothesis and alternative hypothesis

$$
\begin{aligned}
& H_{0}: \beta_{1}=1 \\
& H_{A}: \beta_{1} \neq 1
\end{aligned}
$$

Step 2: specify a test statistic and its distribution when H_{0} is true
$>$ If H_{0} is true, the probability distribution of the test statistic is t distribution.

$$
t=\frac{b_{1}-\beta_{1}}{s e\left(b_{1}\right)} \sim t(N-K-1) j=0,1,2 \ldots k
$$

> where the number of parameters estimated $K+1=5$, the sample size $N=79$, the degree of freedom $d . f .=N-K-1=79-5=$ 74

Step 3: choose a level of significance α and determine the rejection region
$>$ The assumed level of significance $\alpha=0.05$ (two-tails test)
$>$ The critical value $\mathrm{t}_{0.025,74}=$ approx. $\mathrm{t}_{0.025,70}=1.9944$
$>$ So reject H_{0} if $t \geq 1.9944$ or if $t \leq-1.9944$
Step 4: obtain the sample estimates for b_{j} and $\operatorname{se}\left(b_{j}\right)$

$$
t=\frac{b_{1}-\beta_{1}}{\operatorname{se}\left(b_{1}\right)}=\frac{0.813821-1}{0.013969}=-13.328
$$

Step 5: apply the decision rule

$$
-13.328 \leq-1.9944
$$

Step 6: State the conclusion
> There is sufficient evidence to reject the null hypothesis. We have 95% confidence to conclude that the production technology will not exhibit
(c) Type I and Type II errors

	H_{0} is true	H_{0} is false
reject H_{0}	Type I Error	Correct Decision
not reject H_{0}	Correct Decision	Type II Error

Type I errors

$>\mathrm{P}\left[\right.$ reject $\mathrm{H}_{0} \mid \mathrm{H}_{0}$ true $]=\alpha$
$>\mathrm{P}\left[\right.$ not reject $\mathrm{H}_{0} \mid \mathrm{H}_{0}$ true $]=1-\alpha$
\checkmark we can control the prob. of Type I error since we control α (if rejecting a true H_{0} is "costly", we should set α to be small)

Type II errors

> probability of a Type II error is not under our control and we cannot determine this probability without knowing the true value of the unknown population parameter
$>$ the probability of a Type I error and the probability of a Type II error are inversely related - so if we make α smaller, the probability of a Type II error will increase NOTES: both the probability of a Type I and II error will be lower for a larger sample size (imagine a bigger pie)

(d) P-value

> p value of a hypothesis test is the probability that the t -distribution takes on a value at least as large (in absolute value) as the sample value of the t-statistic
$>0 \leq p \leq 1$
$>\mathrm{p}$-value $<\alpha \rightarrow$ reject null

