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Topic 1 Basic Linear Model (Lecture 2-7)  
 
1) Introduction 
- Economic theory describes average behaviour of many individuals: identifies relationships 
between economic variables; make predictions about direction of outcomes when a 
variable is altered 
- Dependent variable: y 
- Explanatory variables: X=x1,x2,….,xk 
- Unknown parameters: 𝛽"  
- Error term: 𝜀"  (any factors other than X that affect y and are not included in the model: i.e. 
assumed linear function form; unpredictable random behaviour)  
- Linear equation: 𝑦" = 𝛽& + 𝛽(𝑋(" + 𝛽*𝑋*" + ⋯+ 𝛽,𝑋," + 𝜀"  
 
2) Economic model  

𝑦" = 𝛽& + 𝛽(𝑋(" + 𝛽*𝑋*" + ⋯+ 𝛽,𝑋," + 𝜀"  
Ø Intercept: 𝛽&à average value of y when all the X’s are zero 
Ø Slope parameters: 𝛽-à expected change in y associated with a unit 

change in 𝑋-, all else constant  
Ø Assumptions:  
Ø (1) Correct model is 𝑦" = 𝛽& + 𝛽(𝑋(" + 𝛽*𝑋*" + ⋯+ 𝛽,𝑋," + 𝜀" 
Ø (2) 𝐸[𝜀"|𝑥"] = 0: error term has an expected value of 0, given any value 

of X’s  
Ø à 𝐸[𝑦"|𝑥"] = 𝛽& + 𝛽(𝑋(" + 𝛽*𝑋*" + ⋯+ 𝛽,𝑋," + 0 
Ø à 𝑦" = 𝐸[𝑦"|𝑥"] + 𝜀"; systematic component of y “explained” by X; a 

random component of y “not explained” by X  
Ø (3) VAR[𝜀"|𝑥"] = 𝜎*: variance of random errors is constant and 

independent of the X’s à Homoskedasticity  
Ø (4) COV 5𝜀", 𝜀-|𝑥", 𝑥-7 = 0 for all I,j=1,2,…N, i≠ 𝑗: any pair of random 

errors are uncorrelated 
Ø (5a) The explanatory variables are not-random (values of all X’s are 

known prior to observe the values of the dependent variable)  
Ø (5b) any one of the X’s is not exact linear function of any other X’s  

 
3)  Lease Squares Principle 

Ø estimates (𝛽&,𝛽(,… . , 𝛽,) such that the squared difference btw fitted 
value and observed value of y is minimised à why “Squared” ? so 
positive diff won’t cancel out negative diff.  

Ø (𝑏&,𝑏(,… . , 𝑏,) are estimators, random variables; values for 
(𝑏&,𝑏(,… . , 𝑏,) are least squares estimates 

Ø Fitted line: 𝑦?@ = 𝑏&	 + 𝑏(	𝑋(" + 𝑏*𝑋*" + ⋯+ 𝑏,𝑋,"  
Ø Least squares residuals: 𝑒?@ = (𝑦" − 𝑦?@) = 𝑦" − (𝑏&	 + 𝑏(	𝑋(" + 𝑏*𝑋*" +

⋯+ 𝑏,𝑋,") 
Ø Sum of Squared residual (RSS): ∑ 𝑒?@

*E
"F(  

Ø  
Ø Note: since  ∑ 𝑒?@E

"F(  = 0 &∑ 𝑒?@E
"F(  𝑋("= 0…..∑ 𝑒?@E

"F(  𝑋G"= 0 
Ø Implies ∑ 𝑒?@E

"F(  𝑦?@ = ∑ 𝑒?@E
"F( [𝑏&	 + 𝑏(	𝑋(" + 𝑏*𝑋*" + ⋯+ 𝑏,𝑋,"] = 0 
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Ø  à sum of “product btw fixed value and residue” is 0 
 
 
4) Statistical properties  
-      Sampling distribution of the OLS estimators: Mean and variances of (𝑏&,𝑏(,… . , 𝑏,) 
-      Mean; If: 
-      𝐸5𝑏-7 = 𝛽-, for j=1,2,….,K with the assumption 𝐸[𝜀"|𝑥"] = 0 for all i=1,2,….,N hold 
-      𝐸[𝑏&] = 𝛽& 
-      Then:  
-      the estimator is said to be unbiased 
 
-      Variance: 𝑉𝐴𝑅5𝑏-7	& 𝐶𝑂𝑉5𝑏-, 𝑏,7 with the following assumptions hold:  
-       𝐸[𝜀"|𝑥"] = 0 for all i=1,2,….,N 
-       VAR[𝜀"|𝑥"] = 𝜎* 
-      COV 5𝜀", 𝜀-|𝑥", 𝑥-7 = 0 
-      X’s are not random  
 
-      unbiased estimator that has a higher prob. of getting an estimate “close” to 𝛽-  
-      The lower the variance of an estimator, the greater the sampling precision of the 
estimator 
-    Factors affecting Variance of OLS estimators:  
-    (1) a larger 𝜎* raises VAR5𝑏-7 
-    (2) greater dispersion in values of X measured by term ∑(𝑋-" − 𝑋MN )* lower the variance of 
VAR5𝑏-7 
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-    (3) Larger sample size lower VAR5𝑏-7 
-    (4) Larger correlation raises VAR5𝑏-7 
 
 
5) Gauss-Markov Theorem  

Ø Under the assumptions of the linear regression model (1--5b), the OLS estimators 
(𝑏&,𝑏(,… . , 𝑏,) have the smallest variance of all linear and unbiased estimators of 
(𝛽&,𝛽(,… . , 𝛽,) OR the Best linear unbiased estimators of (𝛽&,𝛽(,… . , 𝛽,) 

• the assumptions must be true for Gauss-Markov holds 
 

-   Unbiased Estimator of the error variance: 𝜎*O = ∑ PQ@
RS

TUV
(EWGW()

 = XYY
(EWGW()

 where K+1 =no. of 

parameters being estimated  
 

Ø Note: In Eviews: à S.E of regression = 𝜎Z        à 𝜎*O = 𝜎Z^2 
Ø                              à Sum Squared resid (RSS) = ∑ 𝑒?@

*E
"F(   à 𝜎*O = XYY

(EWGW()
 

 
 

Ø  RSS: residual sum of squares 
Ø TSS: total sum of squares  
Ø 𝑅* = ∑(]Q@ W]̂)R

∑(]TW]̂)R
= 1 − XYY

`YY
, the variation in the dependent variable y about 

its mean that is explained by the regression model (how well the model 
fits the data)  

Ø 𝑅* also measures the degree of linear association btw the values of 𝑦"  
and the fitted values 𝑦?@  à 𝑅* = [𝐶𝑂𝑅𝑅(𝑦, 𝑦Za )]^2 

Ø 0 ≤ 𝑅* ≤ 1,  
Ø 𝐼𝑛𝑡𝑒𝑟𝑝𝑟𝑒𝑡𝑎𝑡𝑖𝑜𝑛:	e.g. 21% of the variation in y is explained by variation 

in X1 and X2.  
Ø 𝑤ℎ𝑒𝑟𝑒	𝑦" = 𝛽& + 𝛽(𝑋(" + 𝛽*𝑋*"  
Ø problem: 𝑅*may be made bigger by including irrelevant X variables (no 

significantly related to y) ; Note: intuitively 𝑅* cannot decrease as RSS 
cannot increase by adding more X variables  (As RSS will decrease by 
adding more Xs à so 𝑅* will increase.) 

Ø Solution: measure the cost of imposing irrelevant explanatory variables  
 
6) Unrestricted and restricted model  
-     Restricted model: restrict  𝛽,=0  à one less X variable than the unrestricted model  
-     Minimisation problem:  minimise the sum of squared errors (RSS is the minimised value 
of the objective function evaluated at the solution 𝑏&,𝑏(,… . , 𝑏,   
-     Thus, 𝑅𝑆𝑆X ≥ 𝑅𝑆𝑆pX  must hold: an extra factor might explain the model better so error 
decreases.  
-     à adding one more regressor decreases RSS and thus increases 𝑅* 

𝑅𝑆𝑆X ≥ 𝑅𝑆𝑆pX → 	𝑅pX* ≥ 𝑅X*  
Ø   Adjusted𝑅̂* : this measure does not always rise with additional X’s due 

to “degree of freedom” correction (N-K-1) à as more X’s are added, 
∑𝑒?@

*decreases, but (N-K-1) also decreases.  
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Ø   𝑅̂* = 1 −
∑rQs

R

StutV
∑(vTtvN)R

StV

= 1 − w@R

wvs
R 

Ø 								= 1 − x(1 − 𝑅*) EW(
EWGW(

y 
Ø The effect on 𝑅̂* depends on the reduction in ∑𝑒?@

*relative to (N-K-1).  
Ø In terms of	𝑅*: 𝑅̂* 	= 1 − x(1 − 𝑅*) EW(

EWGW(
y 

Ø When N is sufficiently small and K sufficiently large, the 𝑅̂* might be 
actually negative à BUT! 𝑅* cannot be negative when intercept is 
included in the model  
 

 

7) Hypothesis testing I 
(a) Adding normality: assumption of normality makes statistical inference much easier  

- assume εi ∼ N (0, σ
2

) then: yi ∼ N (β0 + β1 X1i + β2 X2i + . . . βK XKi , σ
2

)  

- If errors are normally distributed à y’s also be normally distributed (y’s contains weighted 

sum of OLS estimators)  

- so OLS estimators are weighted sums of normal variables for j=1,2,…..K 

𝑏&~𝑁(𝛽&, 𝑉𝐴𝑅[𝑏&] 

𝑏-~𝑁(𝛽-, 𝑉𝐴𝑅[𝑏-] 

Ø  OLS estimators will have normal distribution if N is sufficiently large  

(b)Steps for Hypothesis testing  

- formulate 𝐻& and 𝐻} specify a test  

(null hypothesis is usually stated in terms of the magnitude or sign of βj that we do not expect 

(based on economic theory)  

𝑯𝟎:𝜷𝒋 = 𝒄,				𝑯𝑨:𝜷𝒋 ≠ 𝒄 

- test statistic (a r.v.)and its distribution when H0 is true  
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𝒕 =
𝒃𝒋 − 𝜷𝒋
𝒔𝒆(𝒃𝒋)

~𝒕(𝑵− 𝑲− 𝟏) 

- choose a level of significance and determine the rejection region 

rejection region for 2 sided test: 𝒕 > 𝒕𝒄𝒐𝒓𝒕 < −𝒕𝒄 	𝒘𝒉𝒆𝒓𝒆	𝑷[𝒕 ≥ 𝒕𝒄] = 𝑷[𝒕 ≤ −𝒕𝒄] =
𝜶
𝟐

   

	[𝑯𝑨: 𝜷𝒋 ≠ 𝒄] 

rejection region for 1 sided test: 𝒕 > 𝒕𝒄	𝑷[𝒕 ≥ 𝒕𝒄] = 𝜶        	[		𝑯𝑨: 𝜷𝒋 > 𝒄		] 

   rejection region for 1 sided test: 𝒕 < −𝒕𝒄	𝑷[𝒕 ≤ −𝒕𝒄] = 𝜶        	[		𝑯𝑨:𝜷𝒋 < 𝒄		] 

- obtain the sample estimates for bj and se(bj ) apply the decision rule 	

𝒕 =
𝒃𝒋 − 𝒄
𝒔𝒆(𝒃𝒋)

~𝒕(𝑵 −𝑲 − 𝟏) 

- state your conclusion  
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Ø rejection of null 𝐻&: 𝛽- = 0 implies there is a statistically significant relationship 

between 𝑋-	and y.  

 

 

 



 8 

Summary  (example from A1)  

Step 1: identify the null hypothesis and alternative hypothesis  

𝑯𝟎: 𝜷𝟏 = 𝟏 

𝑯𝑨: 𝜷𝟏 ≠ 𝟏 

Step 2: specify a test statistic and its distribution when 𝐻0 is true 	

Ø If H0 is true, the probability distribution of the test statistic is t-
distribution.  

																										𝑡 = 𝒃𝟏W𝜷𝟏
𝒔𝒆(𝒃𝟏)

 ~𝑡(𝑁 − 𝐾 − 1) 𝑗 = 0,1,2 ... 𝑘  

Ø where the number of parameters estimated 𝐾 + 1 = 5, the sample 
size 𝑁 = 79, the degree of freedom 𝑑. 𝑓. = 𝑁 − 𝐾 − 1 = 79 − 5 = 
74  

Step 3: choose a level of significance 𝛼 and determine the rejection 
region  

Ø The assumed level of significance 𝛼 = 0.05 (two-tails test)  
Ø The critical value t0.025,74 = approx. t0.025,70 = 1.9944  
Ø So reject 𝐻0 if 𝑡 ≥ 1.9944 or if 𝑡 ≤ −1.9944  

Step 4: obtain the sample estimates for 𝑏- and 𝑠𝑒(𝑏- )	

𝑡 =
𝑏( − 𝛽(
𝑠𝑒(𝑏()

=
0.813821 − 1
0.013969 = −13.328 

 
Step 5: apply the decision rule  

−13.328 ≤ 	−1.9944 
 
Step 6: State the conclusion  

Ø There is sufficient evidence to reject the null hypothesis. We 
have 95% confidence to conclude that the production 
technology will not exhibit  
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(c) Type I and Type II errors 

 

Type I errors  

Ø P[reject H0 | H0 true]= α  

Ø P[not reject H0 | H0 true]=1−α  

ü we can control the prob. of Type I error since we control α (if rejecting a 

true H0 is “costly”, we should set α to be small) 

 Type II errors 

Ø probability of a Type II error is not under our control and we cannot determine this 

probability without knowing the true value of the unknown population parameter  

Ø the probability of a Type I error and the probability of a Type II error are inversely 

related—so if we make α smaller, the probability of a Type II error will increase  

NOTES: both the probability of a Type I and II error will be lower for a larger sample 

size (imagine a bigger pie) 

(d) P-value  

Ø p value of a hypothesis test is the probability that the t-distribution takes on a value at 

least as large (in absolute value) as the sample value of the t-statistic  

Ø 0≤ 𝑝 ≤ 1 

Ø p-value < α à reject null  


