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Topic 1 Basic Linear Model (Lecture 2-7)

1) Introduction

- Economic theory describes average behaviour of many individuals: identifies relationships
between economic variables; make predictions about direction of outcomes when a
variable is altered

- Dependent variable: y

- Explanatory variables: X=x1,x2,....,xk

- Unknown parameters: [5;

- Error term: g; (any factors other than X that affect y and are not included in the model: i.e.
assumed linear function form; unpredictable random behaviour)

- Linear equation: y; = Sy + 1 X1 + L2Xoi + -+ PruXii + &

2) Economic model
Vi = Bo + BiXyi + BoXoi + 0+ BrXpi + &
> Intercept: [, average value of y when all the X’s are zero
> Slope parameters: 5;=> expected change iny associated with a unit
change in Xj, all else constant
Assumptions:
(1) Correct model is y; = o + B1X1i + L2Xoi + -+ [rXii + &
(2) E[&;|x;] = 0: error term has an expected value of 0, given any value
of X’s
> D Elyilxi] = Bo + Xy + BoXoi + -+ BiXi + 0
» 2>y, = Ely;|x;] + €; systematic component of y “explained” by X; a
random component of y “not explained” by X
> (3) VAR|g;|x;] = o?: variance of random errors is constant and
independent of the X’s > Homoskedasticity
» (4)cov [si,sj|xi,xj] = 0 forall ,j=1,2,...N, i+ j: any pair of random
errors are uncorrelated
» (5a) The explanatory variables are not-random (values of all X’s are
known prior to observe the values of the dependent variable)
» (5b) any one of the X’s is not exact linear function of any other X’s
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3) Lease Squares Principle
> estimates (fy f1,...., Bx) such that the squared difference btw fitted
value and observed value of y is minimised = why “Squared” ? so
positive diff won’t cancel out negative diff.
> (bgby,....,by) are estimators, random variables; values for
(bo,by,....,by) are least squares estimates

» Fitted line: y, = by + by Xq; + by Xy + -+ + b X

» Leastsquaresresiduals: e, = (y; —¥,) = y; — (by + by Xq; + by Xy +
-+ D Xyi)

> Sum of Squared residual (RSS): YV, &,

>

> Note:since YV ,&,=08&Y" & X;;=0...YxN & Xy;=0

> Implies Y1 & 5, = XIL, & [bo + by Xy; + by Xp; + -+ b Xp] = 0



» =2 sum of “product btw fixed value and residue” is 0

4) Statistical properties

Sampling distribution of the OLS estimators: Mean and variances of (bg by, ...., by)
Mean; If:

E[bj] = [, for j=1,2,....,K with the assumption E|¢;|x;| = 0 for all i=1,2,....,N hold
E[bo] = Bo

Then:

the estimator is said to be unbiased

Variance: VAR[bj] & COV[bj, bk] with the following assumptions hold:
El&|x;] = 0foralli=1,2,....,N

VAR[g;|x;] = o?

cov [si, sj|xi,xj] =0

X’s are not random

unbiased estimator that has a higher prob. of getting an estimate “close” to f3;
The lower the variance of an estimator, the greater the sampling precision of the

estimator

Factors affecting Variance of OLS estimators:

- (1) alarger o2 raises VAR[bj]
- (2) greater dispersion in values of X measured by term }(X;; — )?])2 lower the variance of
VAR|b;]
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- (3) Larger sample size lower VAR[bj]
- (4) Larger correlation raises VAR[bj]

5) Gauss-Markov Theorem
» Under the assumptions of the linear regression model (1--5b), the OLS estimators
(bo,by,...., by) have the smallest variance of all linear and unbiased estimators of
(Bo,B1,----» Pr) OR the Best linear unbiased estimators of (B f1,...., Bx)

e the assumptions must be true for Gauss-Markov holds

¥N.&? RSS

= where K+1 =no. of
(N-K-1) (N-K-1)

- Unbiased Estimator of the error variance: g2 =

parameters being estimated

» Note: In Eviews: = S.E of regression = & > g2 =672

_ L oN A2 — __RSS
> - Sum Squared resid (RSS) = YN, &° > ¢ = KD

» RSS: residual sum of squares

» TSS: total sum of squares

> R? = —Z(?‘_J?Z =1 -2 the variation in the dependent variable y about

L(i-y)? TSS

its mean that is explained by the regression model (how well the model
fits the data)

> R? also measures the degree of linear association btw the values of y;
and the fitted values 5, > R? = [CORR(y, y)]"2

» 0<R*<1,

» Interpretation: e.g. 21% of the variation in y is explained by variation
in X1 and X2.

» wherey; = By + B1X1; + B2Xy;

> problem: R?may be made bigger by including irrelevant X variables (no
significantly related to y) ; Note: intuitively R? cannot decrease as RSS
cannot increase by adding more X variables (As RSS will decrease by
adding more Xs = so R? will increase.)

» Solution: measure the cost of imposing irrelevant explanatory variables

6) Unrestricted and restricted model
- Restricted model: restrict 8,=0 => one less X variable than the unrestricted model
- Minimisation problem: minimise the sum of squared errors (RSS is the minimised value
of the objective function evaluated at the solution by by, ..., by
- Thus, RSSp = RSS;z must hold: an extra factor might explain the model better so error
decreases.
- = adding one more regressor decreases RSS and thus increases R?
RSSz = RSSyr » R%, > R2
> AdjustedR? : this measure does not always rise with additional X’s due
to “degree of freedom” correction (N-K-1) = as more X’s are added,
> é}zdecreases, but (N-K-1) also decreases.
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> R°=1 Z(yi—y)lz =1 oy°

N-1
-1 — _p2y N-1

> =1 {(1_ R )N—K—l}

> The effect on R? depends on the reduction in ) é}zrelative to (N-K-1).
2.p2 —1 _ _p2y_N-1

» Intermsof R“:R° =1 {(1 R )N—K—l} )

> When N is sufficiently small and K sufficiently large, the R? might be

actually negative = BUT! R? cannot be negative when intercept is
included in the model

7) Hypothesis testing |

(a) Adding normality: assumption of normality makes statistical inference much easier

2 2
-assume g; ~ N (0, o ) then: y; ~ N (By+Bq Xq3;+ By X9j+... Bx Xkj, 0 )

- If errors are normally distributed = y’s also be normally distributed (y’s contains weighted

sum of OLS estimators)

- so OLS estimators are weighted sums of normal variables for j=1,2,.....K
bo~N(Bo, VAR[b,]
b;~N(B;, VAR[bj]

» OLS estimators will have normal distribution if N is sufficiently large

(b)Steps for Hypothesis testing

- formulate Hy and H, specify a test

(null hypothesis is usually stated in terms of the magnitude or sign of Bj that we do not expect

(based on economic theory)

- test statistic (a r.v.)and its distribution when Hy is true
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- choose a level of significance and determine the rejection region
rejection region for 2 sided test: t > t.ort < —t, where P[t > t.] = P[t < —t.] = %
[H,: B # c]
rejection region for 1 sided test: t > t. P[t > t.] = «a [ Hi:Bj>c ]
rejection region for 1 sided test: t < —t. P[t < —t.| =« [ Hy:Bj<c ]

- obtain the sample estimates for bj and se(bj ) apply the decision rule

t—h_CtN K-1
_se(b]-)~( —kK-1)

- state your conclusion

Rejection Region: Two-Sided Test
f(t)
Reject:Hy : B = ¢ Do Not Reject Reject:Hp: B2 =c¢
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Ho:B2=cand Hy: B2 > ¢

Rejection Region: One-Sided Test

f(t)
Do Not Reject Reject:Hp: B2 = ¢
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Ho:Bo=cand Hy: B < ¢

Rejection Region: One-Sided Test

f(t)

Reject:Hp : B2 = ¢ Do Not Reject

> rejection of null Hy: B; = 0 implies there is a statistically significant relationship

between X; and y.



Summary (example from A1)

Step 1: identify the null hypothesis and alternative hypothesis

Hy:B1 =1

HA: Bl * 1
Step 2: specify a test statistic and its distribution when H is true

> If Hy is true, the probability distribution of the test statistic is t-
distribution.

t=2FP t(N-K-1)j=0,12 ..k

se(by)

> where the number of parameters estimated K + 1 =5, the sample
size N =79, the degree of freedomd. f.=N-K-1=79-5=
74

Step 3: choose a level of significance a and determine the rejection
region

» The assumed level of significance a = 0.05 (two-tails test)
» The critical value to.025,74 = @pprox. ty 2570 = 1.9944

> Soreject Hyif t = 1.9944 or if t < —-1.9944

Step 4: obtain the sample estimates for b; and se(b; )

by —f;  0813821—1

t = - = —13.328
se(b;)  0.013969

Step 5: apply the decision rule
—13.328 < —1.9944

Step 6: State the conclusion

> There is sufficient evidence to reject the null hypothesis. We
have 95% confidence to conclude that the production
technology will not exhibit



(c) Type | and Type Il errors

Hy is true Hp is false
reject Hop Type | Error Correct Decision

not reject Hy | Correct Decision Type Il Error

Type I errors

» Plreject Hy | Hy truel= o,
» P[notreject Hy | Hy true]=1-a

v"we can control the prob. of Type I error since we control o (if rejecting a

true Hy is “costly”, we should set a to be small)

Type Il errors

» probability of a Type II error is not under our control and we cannot determine this
probability without knowing the true value of the unknown population parameter

» the probability of a Type I error and the probability of a Type II error are inversely
related —so if we make o smaller, the probability of a Type II error will increase
NOTES: both the probability of a Type I and II error will be lower for a larger sample

size (imagine a bigger pie)

(d) P-value

» p value of a hypothesis test is the probability that the t-distribution takes on a value at
least as large (in absolute value) as the sample value of the t-statistic
» 0<p<1

» p-value < a = reject null



