is random assignment used?

Counterbalancing

- Complete counterbalancing and partial counterbalancing (enough groups that each condition is occurs in each ordinal position)
- Possible orders:
 - 2 groups 2 orders
 - 3 groups 6 orders
 - 4 groups 24 orders
 - o 5 groups 120 orders
- Latin Square: Each condition is in each order but always proceeds the same condition, i.e. 1234, 2341, 3412,4123

Internal Validity – Are the findings valid?

- Threats:
 - Third variables confounding variables
 - Extraneous variables
 - History (events that happen during study)
 - Maturation (participant changes i.e. height, weight)
 - Instrumentation (technical issues, i.e. changing testing materials part way through)
 - Testing effects (practice, fatigue)
 - o Regression towards the mean

External Validity - Generalisation

- Threats:
 - Volunteer bias
 - Representation of the population
 - Using different measures (i.e. repeated measures)
 - Novelty effect (acting differently in a new situation)
 - Reactivity (acting differently when being observed)
 - Multiple treatment interference (effects of previous treatments)
 - Experimenter characteristics
 - Timing of measurements

Types of Research

Subject Design

Between – Independent Within – Repeated-measures Time related effects:

- Long term: history, maturation
- Short term: order effects
 - Carryover long lasting effects, resolved by using between subjects
 - Progressive error fatigue, practice, resolved with counterbalancing
 - o High external, low internal
 - Correlational
 - Looks at relationships
 - o High external, low internal
 - Descriptive
 - Observational, case studies
 - Qualitative

Directionality Problem

Body
Dissatisfaction

Depression

r = .60

Third Variable Problem

Depression can cause both of these and can be their connection

Body
Dissatisfaction r = .50Binge Eating

Correlation

- Degree of linear association between two variables
- Measures:
 - Direction (positive, negative)
 - Form (linear, nonlinear)
 - Degree/strength (weak, moderate, strong – measured with r-value)
- Relationships:
 - Positive score high in A, score high in B
 - Negative score high in A, score low in B

All four graphs below have Mean of X = 9, variance of X = 11, Mean of Y = 7.5, variance of Y = 4.122 or 4.127, correlation between x and y = 0.816, linear regression line: y = 3 + 0.5X

Bivariate Regression

- Used for prediction when variables correlate
- The stronger the correlation, the more reliable the prediction
- Predictor: IV, x-axis
- Predicted (criterion): DV, y-axis
- Regression lines line of best fit
 - Finds 'centre' of relationship, makes it easier to see but not always reliable
 - \circ Equation: $\hat{Y} = bX + a$
 - Predicted y value = slope x X value + y intercept

R Values

- Correlation Coefficient (r)
- Coefficient of determination (r²)
 - o i.e. r = 0.7, $r^2 = 0.49$, this means 49% of variance in one variable is explained by the other; 51% is *not* explained by the other variable
- Significance tests
 - Transform r so it takes on a normal distribution
 - Can use z scores or SPSS t-test

Correlations

		Anxiety	Negative Mood
Anxiety	Pearson Correlation	1	.751*
	Sig. (2-tailed)		.012
	N	10	10
Negative Mood	Pearson Correlation	.751*	1
	Sig. (2-tailed)	.012	
	N	10	10

^{*.} Correlation is significant at the 0.05 level (2-tailed).

Factors that Affect Correlation

- Range restriction: only collecting a small amount of data can prevent us from seeing the actual trend
- Heterogenous sample: overall correlation of two groups may differ to their separate correlations
 - o i.e. Males might have a low rate of X and females a high rate of X but when combined, the average turns into a moderate rate of X
- Outliers: out of range values
 - Univariate: scores three SD away from the mean
 - Regression analyses can check the influence of an outlier, outliers can be recoded into range, bootstrapping reduces outliers influence
 - Multivariate: scores out of range on numerous variables
 - i.e. age (15 60) vs. income (\$5,000 \$500,000)
 - Age = 16 and income = \$200,000 are both normal but combined are an outlier
 - Regression and bootstrapping can be used but the case can also be deleted