L5: Pointers

1/0inC
e Stdin, stdout, stderr standard stream for 1/O - defined in stdio.h
e Fprintf - write to specified streams
e Sprintf - writes to a specified character array in memory

Pointers

e Stores an address in memory
e This may be the address of another variable

L6: Dynamic Structures
Structs

e Bundle data of different types together
e Similar to classes in Python and Java
e However they don’t have:
o No methods
o Different declaration syntax
o Arrow operator for accessing through a pointer

The Stack

When a function call occurs and new stack frame is added to the bottom of the stack
Stack frame contains:

® Arguments

o Space for local variables

e (all linkage information

Freeing Memory

Any allocated space must be freed when no longer required
Linked lists are good

L7: Working with Files
e Everythingisafileinc
e File is a sequence of bytes
e File permission:
o Levels:
m User
m Group (collection of users)

m Oterh
o Types:

m Read

m Write

m Execute

L8: C Projects and Make
.c File

Anything that causes the compiler to generate code should go into
Function bodies
Global variable declarations

® Anything intended as a message to the compiler
e Function prototypes

e Struct definitions

o Typedefs

e f#defines

standard wariables used by built-in rules
CFLAGS = -Wall -g
RCS = slen.c

e P e

other wvariables.

0B15 = slen.o recstrlen.o

4@ is a built-in wvariable that expands to the target
name
£(PROGRAM): $(0BIS)

gee, -o 3@ $(0BI5)

clean:
rm -f $({PROGRAM)} %(0BJS)

L9: Debugging with gdb
Errorsin C
e Common in all languages
o Typos
o Incorrect algorithms
e Buffer overruns
® Misuse of pointers
e Segmentation Fault

Segmentation Fault

Happens when you program tries to access memory that has not been allocated to it

Is a signal that the OS sends to your program, causing it to exit

OS manages memory, as it manages all hardware; it won’t let your program read from or
write to memory segments it doesn’t own

Handling Errors

® Check return values from functions such as malloc() and fopen()

® Check that pointers are not null

e Always initialize pointer to null on creation if you’re not giving them a valid target
immediately

Source Level Debuggers

Compile program using -g flag

gdb ./myprog

Then run

When the program crashes type where

Show the line where the program crashed
o where

If the program takes command-line arguments, you can’t put them on the gdb command line
e Solution : run (command-line-args)

Example:
gec -Wall -g -o myprog myprog.c
gdb ./myprog

run abcde 1234

Stack Frames

What if the line of code that crashed wasn't in the function with the error, but in something that it
called?

Commands that will help
® bt :shows you a stack trace
® up : moves you up from the stack frame
e down : moves you down a stack frame

Setting Breakpoints

Tells gdb to stop running the code when it gets to a certain point

How to set it?
® break command
Break at link 5 of current file : break 5
Break at line 5 of main.c : break main.c: 5
Break at start of myfunc() in utilities.c: break utilities.c:myfunc
To delete it: clear

How to runit?
Type run

10

