
L5: Pointers
I/O in C

● Stdin, stdout, stderr standard stream for I/O - defined in stdio.h

● Fprintf - write to specified streams

● Sprintf - writes to a specified character array in memory

Pointers

● Stores an address in memory

● This may be the address of another variable

L6: Dynamic Structures
Structs

● Bundle data of different types together

● Similar to classes in Python and Java

● However they don’t have:

○ No methods

○ Different declaration syntax

○ Arrow operator for accessing through a pointer

The Stack

When a function call occurs and new stack frame is added to the bottom of the stack

Stack frame contains:

● Arguments

● Space for local variables

● Call linkage information

Freeing Memory

Any allocated space must be freed when no longer required

Linked lists are good

L7: Working with Files
● Everything is a file in c

● File is a sequence of bytes

● File permission:

○ Levels:

■ User

■ Group (collection of users)

■ Oterh

○ Types:

■ Read

■ Write

■ Execute

8

L8: C Projects and Make
.c File

● Anything that causes the compiler to generate code should go into

● Function bodies

● Global variable declarations

.h File

● Anything intended as a message to the compiler

● Function prototypes

● Struct definitions

● Typedefs

● #defines

Make

L9: Debugging with gdb
Errors in C

● Common in all languages

○ Typos

○ Incorrect algorithms

● Buffer overruns

● Misuse of pointers

● Segmentation Fault

Segmentation Fault

● Happens when you program tries to access memory that has not been allocated to it

● Is a signal that the OS sends to your program, causing it to exit

● OS manages memory, as it manages all hardware; it won’t let your program read from or

write to memory segments it doesn’t own

9

Handling Errors

● Check return values from functions such as ​malloc() ​and ​fopen()

● Check that pointers are not null

● Always initialize pointer to null on creation if you’re not giving them a valid target

immediately

Source Level Debuggers

● Compile program using ​-g​ flag

● gdb ./myprog

● Then ​run

● When the program crashes type where

● Show the line where the program crashed

○ where

If the program takes command-line arguments, you can’t put them on the ​gdb ​command line

● Solution : ​run (command-line-args)

Example:

Stack Frames

What if the line of code that crashed wasn't in the function with the error, but in something that it

called?

Commands that will help

● bt ​: shows you a stack trace

● up ​: moves you up from the stack frame

● down ​: moves you down a stack frame

Setting Breakpoints

Tells gdb to stop running the code when it gets to a certain point

How to set it?

● break ​command

● Break at link 5 of current file : ​break 5

● Break at line 5 of main.c : ​break main.c: 5

● Break at start of myfunc() in utilities.c: ​ break utilities.c:myfunc

● To delete it: ​clear

How to run it?

Type ​run

10

