Psychopharmacology

Neurotransmitters and Neuron Communication

- Release of NT across synapse from presynaptic terminal (axon terminal) to postsynaptic membrane (dendritic spine)
 - o Ca2+ influx into presynaptic due to AP
 - o Exocytosis of NT
 - NT bind to receptors → change in membrane potential or second-messenger signalling → change in excitability/cell response
 - Types of Receptors:
 - Ionotropic: Opens ion channel → change in membrane potential
 - e.g. GABA-A receptor → influx of Cl- → hyperpolarisation
 - Fast changes in membrane potential
 - Metabotropic: Causes signalling cascade inside cell e.g. second-messenger signalling
 - E.g. GABA-B receptor: g-protein coupled receptor → second messenger production
 - Slower changes to cell w/ longer-lasting effect
 - Changing gene expression and phenotype
 - Increasing/decreasing no. of receptors → more/less sensitive
 - Modify activity of other receptors e.g. opening channel → change in membrane potential
- Loewi's experiment: Stimulation of vagus nerve of heart A → decrease in HR of A as well as decrease of HR of B
 - o Diffusion of NT through water
- Types of neurotransmitters:

Class	Sub-class	Endogenous ligand	Receptors
Cholines		Acetylcholine ACh	Nicotinic, Muscarinic
Monoamines	Catecholamines	Dopamine DA	D1-5
		Norepinephrine/ Noradrenalin NA	Alpha and beta adrenergic
	Indolamines	Serotonin 5HT	14 types of 5HT receptors
Amino acids	Excitatory	Glutamate	NMDA, AMPA, mGlu, kainate
	Inhibitory	GABA	GABA-A, GABA-B
Peptides	Opioids	Endorphins	Opioid
Lipids	Endocannabinoids	Anandamide	Cannabinoid
Nucleosides	Purine	Adenosine	Adenosine, Purinergic

Mainly glutamate and GABA – amino acids

0

► Schematic Midsagittal Section of a Rat Brain, Showing the Locations of the Most Important Groups of Noradrenergic Neurons and the Distribution of Their Axons and Terminal Buttons

► Schematic Midsagittal Section of a Rat Brain, Showing the Locations of the Most Important Groups of Serotonergic Neurons and the Distribution of Their Axons and Terminal Buttons

► Schematic Midsagittal Section of a Rat Brain, Showing the Locations of the Most Important Groups of Dopaminergic Neurons and the Distribution of Their Axons and Terminal Buttons

0

Dopaminergic system

- 1. Nigral-striatal pathway
- 2. Mesolimbic pathway
- 3. Mesofrontal pathway
- 4. Pathway to the hypothalamus (the tuberoinfundibular tract)

0

- Dopamine pathways:
 - Mesolimbic: VTA → nucleus accumbens (part of ventral striatum)
 - Involved in reward learning
 - Mesocortical: VTA → cortex
 - o Involved in emotion
 - Nigrostriatal: Substantia nigra → striatum i.e. caudate nucleus + putamen
 - Involved in movement planning
- Drug-Receptor Binding
 - Drug-ligand complex <-> Drug + Receptor

Neurotransmitter Recycling

- Reuptake transporter proteins: Take NT back into presynaptic terminal → recycling e.g.
 SERT, DAT
- NT degrading enzymes: Hydrolysis of NT e.g. MAO-A (serotonin + noradrenaline), MAO-B (dopamine)

Agonists and Antagonistic Drugs

- Agonist: Enhances effect of NT
 - Mimics NT and binds to receptor
 - E.g. THC mimics anandamide → cannabinoid receptor, Valium (benzodiazepine)+ ethanol → GABA, heroin mimics endorphins → opioid receptor, nicotine mimics Ach → nAchR
 - Alcohol: GABA receptors are inhibitory → inhibits regulatory role of prefrontal cortex → loss of inhibition, inhibiting cerebellum → decreased coordination
 - o Enhances release of NT e.g. by being precursor
 - L-dopa → dopamine → noradrenaline (only in noradrenergic neurons)
 - Parkinson's disease: Loss of substantia nigra → loss of dopamine for basal ganglia → impaired voluntary movement and coordination
 - L-dopa → exaggerated movements
 - Encephelitus-induced catatonia: Damaged basal ganglia → no voluntary movement
 - Ecstasy: Serotonin + noradrenaline (+ dopamine to a lesser extent)

- Amphetamine: Dopamine + noradrenaline
- Cocaine: Dopamine
- Blocking reuptake of NT/reversing reuptake transporters
 - Ecstasy and SSRI's prevent reuptake of serotonin
 - Ecstasy reverses transporters
 - Amphetamine and cocaine prevent reuptake of dopamine
 - Tricyclic antidepressants prevent reuptake of serotonin + noradrenaline
- Blocking enzymes that degrade NT
 - MAO A degrades serotonin + noradrenaline; MAOA drugs for anxiety and depression prevent MAO A activity
 - Ecstasy inhibits MAO A
 - MAO B degrades dopamine; MAO B drugs for Parkinson's and Alzheimer's
 - Amphetamine inhibits MAO B
 - *Cocaine doesn't inhibit MAO B
- Antagonist: Prevents effect of NT
 - o Blocking receptors to stop NT from binding
 - E.g. Typical antipsychotics block D2 dopamine receptor
 - E.g. chlorpromazine/thorazine (found through observation) for schizophrenia
 - Reduce +ve symptoms e.g. delusions, hallucinations
 - Does not affect –ve symptoms e.g. catatonia, formal thought disorder, affective flattening (may be due to neurodegeneration)
 - o Enlargement of ventricles
 - o Loss of PFC
 - o Smaller left hippocampal volume
 - Can lead to Parkinson's symptoms as blocks dopamine in basal ganglia
 - Atypical antipsychotics block serotonin 5HT receptors
 - Less movement symptoms, more metabolic symptoms
 - Ethanol blocks glutamate receptors → less excitatory effect
 - Heroin → morphine blocks receptors for substance P pain signal
 - Bind to receptor → changing conformation → cannot bind to NT/downregulation as taken in

Relative Affinities of Drug

- Drugs bind to many receptors w/ diff relative affinities → Diff side effects e.g. typical antipsychotics block D2 receptors in mesolimbic dopamine system, but also nigrostriatal dopamine system → movement reduction
- Efficacy depends on affinity to specific receptor type

Anti-depressant Drugs

- Enhance monoamine NT e.g. dopamine, serotonin, noradrenaline release
- Selective serotonin reuptake inhibitors (SSRIs): Prevent transporter proteins from reuptake of serotonin
- Tricyclic antidepressants: Block reuptake of serotonin and noradrenaline
- Monoamine oxidase inhibitors (MAO): Prevent MAO from degrading NT
 - o E.g. iproniazid inhibiting MAO A and MAO B → elevation of serotonin
 - First antidepressant discovered serendipitously (used to treat tuberculosis)

Need to avoid foods w/ tyramine (which can't be broken down if MAO inhibited)

Theories for Depression

- Monoamine hypothesis of depression: Insufficient cortical/limbic monoamines
 - O But increase in monoamines e.g. with SSRI's and MAO A's did not → acute depression relief
 - Some depressed patients had high levels of monoamines
- Receptor sensitivity hypothesis: Used to explain why therapeutic effects of drugs took weeks (not acute like L-dopa)
 - o Too many autoreceptors (5HT1) and post-synaptic receptors (5HT2) for serotonin
 - Autoreceptors maintained level of serotonin in receptor → -ve feedback
 - Chronic elevation of serotonin in synapse → decline in no. autoreceptors and postsynaptic receptors → decreased sensitivity
 - Other changes: Upregulation of other receptors e.g. glucocorticoid receptors in hippocampus → regulation of HPA axis → decreased stress, hormones → new synapses

Reinforcement and Dopamine

Evidence of Dopamine in Reinforcement

- 1. With natural reinforcer/drug:
 - a. Dopamine antagonists → decline in effect of reinforcers (natural/drug)
 - i. E.g. decline in rat lever-pressing for food/cocaine
 - ii. Similar to effect of extinction
 - iii. Dose-dependent
 - b. Dopamine agonist e.g. amphetamine → greater persistence for better reward even with higher FR schedule
 - c. Dopamine antagonist/depletion of dopamine → decreased persistence and effort in working for better reward (giving up)
- 2. With intracranial self-stimulation: Rats learn to lever-press to self-stimulate
 - Vigorous
 - Little satiety unlike natural rewards e.g. food
 - Modulated by motivational state e.g. hunger
 - Modulated by intensity of stimulus
 - a. Stimulating dopaminergic neurons i.e. mfb (axons of neurons from VTA to NAcc) /lateral hypothalamus which stimulates mfb → reinforcing
 - i. Modulated by intensity of electrical stimulation: Greater lever pressing for more intense stimulus
 - b. Dopamine drugs → affect reinforcing effect of brain stimulation

- i. Dopamine agonists e.g. cocaine, heroin, amphetamine → greater pressing for less intense stimulus
- ii. Dopamine receptor blocker e.g. chlorpromazine (antipsychotic) at nucleus accumbens → less pressing even for greater stimulus
- c. Microdialysis revealed increase in dopamine levels w/ ICSS

Reward Pathway

Brain dopamine pathways (saggital section)

- Mesolimbic dopamine pathway
- Involves dopaminergic neurons from VTA → axons forming medial forebrain bundle → release of dopamine into nucleus accumbens
- Lateral hypothalamus connected to mfb \rightarrow highest rates of responding when lateral hypothalamus/mfb was stimulated

Optogenetics

- Can stimulate particular neuron of interest
- Virus packaged with genes to make photosensitive channel proteins (opsin channel) on targeted neurons e.g. neurons with tyrosine hydroxylase (dopamine neurons)
- Stimulation with light \rightarrow opening of channels \rightarrow stimulation of dopamine neurons

Effect of Dopamine

- Anhedonia hypothesis: Dopamine → pleasure from reward
 - o BUT: Dopamine drugs do not change consumption level of food w/ free feeding
 - o i.e. pleasure from reward is not affected
- 1. Signals when reward is available
 - 1. Effect of pairing CS with reward:
 - i. Reward → dopamine released
 - ii. Pairing CS (light) with reward (food) → dopamine released after CS
 - iii. Omission of reward after CS → increase in dopamine after CS, decrease in dopamine after expected time of reward
- 2. Activates behavior for reward
 - 1. Levels of dopamine in striatum in discrimination task:
 - i. Rewarded movement: Increase in levels of dopamine before movement
 - ii. Rewarded non-movement: No increase
 - iii. Unrewarded movement: No increase
- 3. Motivates reward seeking/maximization: Natural reward e.g. food
 - 1. Dopamine agonist e.g. amphetamine → greater persistence for better reward even with higher FR schedule
 - 2. Dopamine antagonist/depletion of dopamine → decreased persistence and effort in working for better reward (giving up)
 - 3. Stimulation of nucleus accumbens in humans → higher reward seeking behavior by choosing activities which are rewarding
 - i. Rather than a feeling of euphoria

Stimulation of Nucleus Accumbens

- No experience of euphoria at normal intensities
 - High intensity → euphoria
- Increase in reward-seeking behavior i.e. increased motivation for behavior that increases pleasure
- → lower depression ratings