
Preview - 1 
 

Statistical Thinking using Randomisation and Simulation (ETC2420) 

 

Contents (click the links to go directly to the page): 

(2)    W1L1 – Introduction and Motivation: 

(6)    W1L2 – Game Simulation and Decision Theory: 

(11)    W2L1 – Simulation and Decision Theory: 

(15)    W2L2 – Hypothesis Testing: 

(21)    W3L1 – Statistical Distributions (P1): 

(31)    W3L2 – Statistical Distributions (P2): 

(39)    W4L1 – Fitting Models: 

(45)    W4L2 – Linear Models: 

(52)    W5L1 – Linear Models: Diagnostics: 

(63)    W5L2 – Model Choice: 

(72)    W6L1 – Bootstrap, Permutation and Linear Models:  

(85)    W6L2 – Generalised Linear Models:  

(93)    W7L1 – Multilevel Models:  

(109)  W7L2 – Models by Partitioning: 

(118)  W8L1 – Ensemble models using bootstrap:  

(123)  W8L2 – Boosted models:  

(130)  W9L1 + W9L2 – Bayesian Thinking:  

(143)  W10L1 – Compiling data for problem solving (P1):  

(158)  W10L2 – Compiling data for problem solving (P2):  

(170)  W11L1 + W11L2 – Compiling data for problem solving (P3):  

 

Key: 

• Red underlined means new lecture commenced 

• Purple highlight heading means content relevant to a certain slide package 

• Green highlight heading means new main topic 

• Blue highlight heading means new sub topic 

 

 

 

 

 

 

 

 

 

 



Preview - 2 
 

Estimation  

• Estimate parameters of a distribution from the sample data  

o e.g. given a sample of heights but haven’t been told the distribution they have come 

from, and haven’t told us what the population parameters are either 

• Common approach is maximum likelihood estimation  

o Requires assuming we know the basic functional form 

Want to do  assume a distribution and estimate the population parameters 

Also want to  find out what distribution matches the sample the best 

Common approach to doing that is MLE 

 

Maximum likelihood estimate (MLE) 

• Estimate the unknown parameter θ using the value that maximises the probability (i.e. 

likelihood) of getting the observed sample  

o Theta can have more than one element, depending on the distribution of the 

function we may have more than one population parameter 

• Likelihood function 

o Likelihood function is made from multiplying the PDF of the distribution together 

over and over again, after the sample values drawn have been subbed into the 

function 

o The probability of observing the first draw from the distribution up to the nth draw 

from the distribution assuming that we know theta 

o Density function evaluated at each sample value and then the product of those 

 

• This is now a function of θ.  

• Use function maximisation to solve. 
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Example - Mean of normal distribution, assume variance is 1 

• MLE estimate of the population mean for a normal model is the sample mean  

• Run this numerically  

• Suppose we have a sample of two: x1 = 1.0, x2 = 3.0 

• Likelihood 

 

Plot it (i.e. Plot the likelihood function, and the peak of it corresponds to the maximum likelihood 

estimate for the distribution) 

 

The maximum is at 2.0. This is the sample mean, which we can prove algebraically is the MLE. 

 

Estimate mean and variance (i.e. now we don’t know both of the parameters) 

  

We know it comes from a normal distribution. What are the best guesses for the μ, σ?  need to 

compute the likelihood function by subbing in each of the 22 sample values into the distribution and 

then finding the product of those and finding the MLE of that overall function 

Compute the likelihood for a range of values of both 

parameters. 

For instance, this likelihood function has two variables, so 

when we plot it the third dimension here is showing the 

probability (i.e. the colour is most concentrated at the far 

right of the x-axis (mu) and part way up the y-axis (sigma)) if 

we were to visualise it, it would be like a mountain with the 

peak being the MLE (maximum likelihood estimate) 
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Quantiles 

• quantiles are cut-points dividing the range of a probability distribution into contiguous 

(sharing a common border) intervals with equal probabilities  

o 2-quantile is the median (divides the population into two equal halves)  

o 4-quantile are quartiles, Q1, Q2, Q3, dividing the population into four equal chunks  

• quantiles are values of the random variable X (actual values we might observe) 

• useful for comparing distributions  

o e.g. very useful for checking if our sample is consistent with the shape of the 

distribution (confirms the full distribution)  

• Also, can be useful for things such as test scores, i.e. knowing what value corresponded to 

90% of people achieving above  

 

Example: 

• 12-quantiles for a N(0,1) 

 

• 23-quantiles from a Gamma(2,1) 

 

 

Percentiles 

• indicate the value of X below which a given percentage of observations fall, e.g. 20th 

percentile is the value that has 20% of values below it  

• 17th percentile from N(0,1) 

 

• 78th percentile from Gamma(2,1) 
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Goodness of fit  a reason for generating quantiles 

• “Have a sample of data and want to check if it is consistent with a specific probability 

distribution” 

o If data is consistent with distribution  can use that model to estimate probabilities  

• Quantile-quantile plot (QQplot) plots theoretical vs sample quantiles (could even do 

sample vs sample if wanted to compare insurance products for instance) 

o “QQ” comparing quantiles from any distribution to quantiles from the sample 

• Lets check the distribution of PISA math scores 

Method for checking if our data below is similar to a normal distribution in shape or not: 

Generate a sample from an actual normal distribution then calculate quantiles from those, and then 

plot those theoretical quantiles against our sample quantiles (we obtain our sample quantiles from 

sorting our data we are investigating from lowest to highest  the sample values are paired with 

the theoretical values) 

i.e. the qqplot below says that our sample very closely matches what we would expect if we drew a 

sample from a normal distribution 

 

Standardised values (i.e. mean 0, st 1 for normal dist) make it easier to understand QQ plot 

Real data is not always perfect, in maths scores they are adjusted using some model (hence why the 

distribution is so perfect), privacy can also be protected through this 

 

 

 

 

 

 


