5.8. Multi-Variable Optimization

Profit = Revenue - Costs

Revenue = Demand function * Quantity

Maximum and Minimums

A summary of the necessary and sufficient conditions for establishing local maxima and minima of functions of two variables is as follows:

Condition	Local maximum	Local minimum
First-order necessary	$f_x = f_y = 0$	
Second-order sufficient	$f_{xx}, f_{yy} < 0$	$f_{xx}, f_{yy} > 0$
	$f_{xx}f_{yy} - f_{xy}^2 > 0$	

Second order conditions

$$|H|=f_{xx}f_{yy}-f_{xy}^2$$
 . is the determinant of the quadratic d(dz)

Saddle Points

Saddle points exist if at the point (xo,yo) satisfies the first order conditions but not the second order conditions.

Constrained Optimisation - Substitution

Let's say we have a constraint (e.g. a budget line) that specifies some limit on x or y. For example:

Using the function

$$z = f(x,y) = 2 - (x-1)^2 - (y-1)^2$$
,

and the constraint $2=y+\frac{2}{5}x$, find the new optimum point.

We can use the substitution method to solve this. However this only works when:

- 1. The constraint is relatively simple
- 2. The constraint can therefore be rearranged to perform substitution into the objective function.

When this is not the case, we need to use the Lagrange Multiplier Method

Constrained Optimisation – Lagrange Multiplier Method

The lagrange multiplier helps when the constraints are more difficult, such as -6 = x + y + z.2

$$F(x, y, z, \lambda) = f(x, y, z) - \lambda g(x, y, z)$$

Where f(x,y,z) is our normal function and g(x,y,z) is our constraint function. You express the constraint function as everything = 0. For example:

$$g(x, y, z) = x - y + 2z - 6 = 0.$$