1	(use case studies as examples in exam)
Climate change is	Serious climate changes in the future are predicted across Australia
imposing ever	Evolution will underpin species' responses to environmental changes
increasing selection	Evolution can occur quickly enough to be relevant
on wild populations	Evolution can occur quickly enough to be relevant
Evolution will be a	- Evalutionary favors get an genetic diversity resulting in evalution of
	Evolutionary forces act on genetic diversity resulting in evolution of Table in a and an acids.
major factor that	populations and species
underpins species	Evolution can be defined as a change in allele frequency
response to climate	 Adaptive evolution – responding to selective pressures
change	Neutral evolution – genetic drift
	Four evolutionary forces act on genetic variation
	 Mutation
	Source of all genetic variation
	Can be neutral, beneficial or deleterious
	Very slow
	 Random genetic drift (neutral)
	 Results in isolated populations diverging and drifting
	apart
	Migration (neutral)
	 Counteracts divergence due to drift or selection (if
	stronger than selection)
	 Selection (adaptive)
	 Divergent natural selection results in populations
	diverging
	 Uniform natural selection counteracts population
	divergence
Quantitative traits	Any trait that shows a normal distribution
are; traits that show	 Focus on continuously distributed phenotypes (traits) as opposed to
a continuous	discrete traits
phenotypic	Genetic basis of these phenotypes (traits) statistically characterised by
distribution,	measuring the same trait in related individuals
controlled by many	Quantitative genetics is important because it
genes, influenced by	 Allows us to understand the genetic basis of adaptive evolution
both genetic and	 Underpins our ability to predict evolutionary responses to
environmental	selection
factors	
Evolution by natural	Evolution be natural selection requires
selection requires	 Phenotypic variation – individuals within a population must vary
	 Variation must have a genetic basis – differences between
	individuals passed from parents to offspring
	 Variation must result in differences in reproductive success (i.e.
	fitness)
	 Survival and reproduction of individuals must not be random –
	linked to the variation among individuals
Can partition total	
phenotypic variation	$V_P = V_G + V_F$
in quantitative traits	9 -
into genetic and	
environmental	
components	$V_{P} = (V_{A} + V_{D} + V_{I}) + V_{E}$
VP = (VA+VD+VI)+VE	