| 1 | (use case studies as examples in exam) | |------------------------|--| | Climate change is | Serious climate changes in the future are predicted across Australia | | imposing ever | Evolution will underpin species' responses to environmental changes | | increasing selection | Evolution can occur quickly enough to be relevant | | on wild populations | Evolution can occur quickly enough to be relevant | | Evolution will be a | - Evalutionary favors get an genetic diversity resulting in evalution of | | | Evolutionary forces act on genetic diversity resulting in evolution of Table in a and an acids. | | major factor that | populations and species | | underpins species | Evolution can be defined as a change in allele frequency | | response to climate | Adaptive evolution – responding to selective pressures | | change | Neutral evolution – genetic drift | | | Four evolutionary forces act on genetic variation | | | Mutation | | | Source of all genetic variation | | | Can be neutral, beneficial or deleterious | | | Very slow | | | Random genetic drift (neutral) | | | Results in isolated populations diverging and drifting | | | apart | | | Migration (neutral) | | | Counteracts divergence due to drift or selection (if | | | stronger than selection) | | | Selection (adaptive) | | | Divergent natural selection results in populations | | | diverging | | | Uniform natural selection counteracts population | | | divergence | | Quantitative traits | Any trait that shows a normal distribution | | are; traits that show | Focus on continuously distributed phenotypes (traits) as opposed to | | a continuous | discrete traits | | phenotypic | Genetic basis of these phenotypes (traits) statistically characterised by | | distribution, | measuring the same trait in related individuals | | controlled by many | Quantitative genetics is important because it | | genes, influenced by | Allows us to understand the genetic basis of adaptive evolution | | both genetic and | Underpins our ability to predict evolutionary responses to | | environmental | selection | | factors | | | Evolution by natural | Evolution be natural selection requires | | selection requires | Phenotypic variation – individuals within a population must vary | | | Variation must have a genetic basis – differences between | | | individuals passed from parents to offspring | | | Variation must result in differences in reproductive success (i.e. | | | fitness) | | | Survival and reproduction of individuals must not be random – | | | linked to the variation among individuals | | Can partition total | | | phenotypic variation | $V_P = V_G + V_F$ | | in quantitative traits | 9 - | | into genetic and | | | environmental | | | components | $V_{P} = (V_{A} + V_{D} + V_{I}) + V_{E}$ | | VP = (VA+VD+VI)+VE | |