PHAR1822 Notes

Pharmaceutical calculations

$d = \frac{m}{v}$	$density (g/mL) = \frac{mass (g)}{volume (mL)}$
$c = \frac{n}{v}$	$concentration (mol/L) = \frac{moles (mol)}{volume (L)}$
$n = \frac{m}{MM}$	$no.moles = \frac{mass(g)}{molecular mass(g/mol)}$
$c_1v_1=c_2v_2$	use for dilutions

	Drug/mixture
w/w	grams/100g
w/v	grams/100mL
v/v	mL/100mL
v/w	mL/100g

- dL = decilitre = 100mL
- If a mixture is made up of water and drug, add x grams of drug, and then (100 x) mL of water to make the mixture a *total* amount of 100mL (or 100g)
 - o I.e. add water to make the volume up to 100mL
- Dilution ≈ paediatric sample use C₁V₁=C₂V₂
- If working with a liquid drug or solvent other than water (e.g. ethanol) density formula

Liquids and Solutions

Solution	Mixture of two or more components that form a single phase which is homogeneous down to the molecular level
Phase	Part of a system separated by one or more boundaries/interfaces, which can be separated physically (e.g. filtration, centrifuge)
Dissolution	Transfer of molecules or ions from the solid state into solution
Miscibility	Combination of two solvents that mix completely to form a homogenous solution

Solubility

- Limit to which a solute can be dissolved in a solvent under a particular set of conditions
- Determined at 20°C
- Based on amount of solvent in mL or grams ("parts"), required to dissolve 1g of drug/excipient
 - Soluble 10-30 parts solvent
 - o Insoluble >10000 parts solvent
- Water solubility depends on polarity and functional groups H-bonds and ion-dipole bonds
 - o -NH, -OH or C=O functional groups will H-bond with water
 - o Ion-dipole bonds are even stronger than hydrogen bonds

Salt form of drugs

- Salt form of drugs are more water soluble than neutral form
- They form more, and stronger, hydrogen bonds with water
- However:
 - o Samples can be hygroscopic (draw in moisture from air)
 - Can change pH of solution (important for injection and oral solutions)
 - Reactions with packaging (glass and basic solutions)
 - o Different salts of a drug can work differently
 - o Salts interact with each other and precipitate out of solution
- Most common salt forms of drugs:
 - Acidic drugs Na⁺, K⁺, Ca²⁺, Zn²⁺
 - Basic drugs Cl⁻, SO₄²⁻, PO₄³⁻

Salting out

- Precipitation of peptides and proteins from solution at high salt concentrations
- At high [salt], water molecules bind to the salt instead of the protein (not enough free water available) causes precipitation of protein molecules (less soluble solute)
- Some drugs based on proteins and peptides must ensure drugs do not precipitate

- Van der Waals radius imaginary radius of an atom or molecule
 - Physical space the drug/particle takes up
- Hydrodynamic radius imaginary radius of drug/particle and any bound subparticles (e.g. water) that travel through the solution with the drug particle

- Brownian motion random movement of particles suspended in a liquid or gas
 - Caused by collisions with molecules of the surrounding medium
 - o Rate of drug/particle movement through solution is directly related to size

Stokes – Einstein equation

- Rate at which drug diffuses through solution is largely dependent on hydrodynamic radius and solvent viscosity

 $- D = \frac{KT}{6\pi\eta r}$

 \circ D = diffusion coefficient (m²s⁻¹)

 \circ K = Boltzmann constant (1.38*10⁻²³JK⁻¹)

○ T = temperature (K)

ο η = solvent viscosity (water: 1.232*10⁻³Pa S)

o r = hydrodynamic radius (metres)

Change	Rate of drug diffusion
Increase temperature	Faster
Change form water to oil	Slower
Change from neutral	Slower
drug to salt form	
Make a nanoparticle	Slower
formulation of the drug	

Vapour pressure

- Pressure of vapour above liquid when liquid and vapour are at equilibrium
- Amount of vapour about liquid depends on intermolecular forces
 - More bonding between molecules less vapour formed lower vapour pressure
- Lower vapour pressure boils at higher temperature
- Higher vapour pressure boils at lower temperature
- 50/50 mixture of ethanol and water
 - Does NOT mean mixture of vapour is also 50/50
 - More ethanol molecules in air than water since ethanol has a higher vapour pressure

- $P_{total} = X_A P_A + X_B P_B$
 - o P_{total} = total pressure from all molecules in the gas/vapour phase
 - X_A = mole fraction of gas A
 - Total of mole fractions (X_A + X_B) must equal 1
 - P_A = vapour pressure of gas A
 - o Raoult's Law

2 polar molecules	1 polar 1 non-polar	2 non-polar
H-bonding – keeps in liquid phase	Repulsion – more molecules in	Ideal conditions
	gas/vapour phase	Hydrophobic forces very weak;
		no repulsion
Lower vapour pressure for both	Higher VP	No effect on partial pressures of
Higher BP	Lower BP	the gases/vapours
e.g. H ₂ O and NH ₃	e.g. H ₂ O and ethanol	e.g. benzene and hexane e.g. benzene and hexane Mole fraction

Freezing point depression

- Dissolution of polar solute into a solvent results in drop in the freezing point of the solvent
 - Salt + water lowers freezing point, so water doesn't freeze as easily
 - Blood contains many polar molecules (proteins, salts) lowers freezing point of blood
- Size of FPD depends on solvent and amount of solute (no. molecules, not no. moles)
- Any solution injected into vein, or eye drops must have FDP of 0.52°C