IMMU3102

Table of Contents

	Page No.
Innate Immunity	1
Dendritic cells	5
B cells and Antibody Isotype	18
T cell receptor and VDJ	28
T cell maturation	44
Cytokines and chemokines	55
MHC Molecules	69
MHC biosynthesis	81
B cells	97
Cytotoxic T cells and NK cells	107
B cells	122
Antibody and Complement	127
T helper and Innate Lymphoid cells	137
Regulation of Immune Responses 1	153
Regulation of Immune Responses 2	165

Innate Immunity

Innate Immunity

- Independent of prior exposure, no specific recognition (it has a narrower specificity- it recognises hundreds maybe thousands of shapes), not improved by repeated infections (lacks memory).
- **Self-non-self discrimination is perfect** (better than adaptive immunity!) The receptors are encoded in the germline and recognise components of pathogens that are not present in humans
- Receptors on one persons macrophages are probably the same to those on another persons.
- Developmentally ancient

Adaptive

- Develops slowly on exposure- 5-7 days.
- Dependent on prior exposure, improved by repeated infections (memory)
- Specific
- Self-nonself discrimination imperfect
- Developmentally recent immune system

Innate Immunity

- **1. Speed** (early, rapid)
 - resident cells sit in peripheral sites and are already there, neutrophils are in the blood so they can rush there. Happens within minutes to hours and finished 12 hours
- **2. Duration** (short-lived)
 - very inflammatory and attracts lymphocytes to the area, but if it continues and is chronic it can be bad.
- 3. Repetitive
 - o responds the same way each time a microbe is encountered
- 4. Interactive
 - with other cells of innate and adaptive immune system.

Functions

- Early protection
- Instructive: activation and shaping of adaptive immunity
- Components used and enahcned by adaptive immunity- e.g. complement pathways, phagocytosis and inflammation

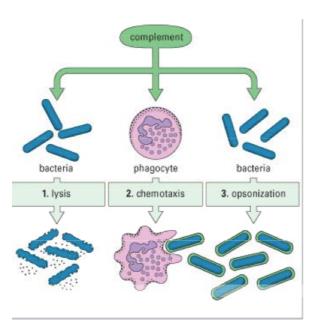
Pattern recognition receptors (PRRs):

- Immune cells have receptors that only recognise patterns on surface of microbes.
- Can be cell surface Toll-like receptors
- Cystosolic: NOD-like receptors or RIG-1 for viruses
- These receptors recognise the shared structures (PAMPs).

PAMPS Pathogen associated molecular patterns-

- = different molecules express different microbial patterns.
 - o E.g. Lipopolysaccharide
 - o Mannose and complex carbohydrates
 - o Ds RNA, unmethylated CpG DNA

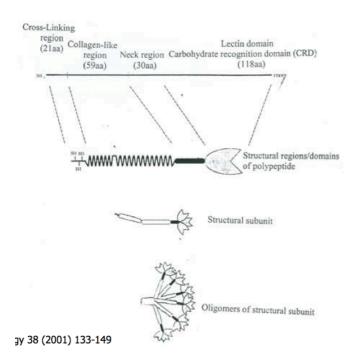
DAMPS Damage associated molecular patterns:


• the receptors can recognise these molecules that are released from damaged or necrotic cells.

PRRs: Soluble

- C-reactive protein and serum amyloid protein
- Complement
- Mannose binding ligand

	Structure	Ligand	Effect	Significance
C-reactive	Pentraxins.	Recognise	Activate	CRP used as a
protein and	C-reactive	bacterial cell	classical	marker of
serum	protein is	walls=	complement	bacterial
amyloid	produced by the	phosphorylcholi	(bind C1q)	infection.
protein	liver within	ne is common	Opsonisation	SAP: increased
	hours bacterial			in chronic
(soluble	infection. Liver			inflammation
PRR)	produces in			Too much SAP
	response to IL-1,			then it deposits
	TNF.			in the tissues→
				amyloidosis
Complement	C3 is central	Can be directly	Opsonisation	
- C3	component of	activated on	of pathogens	
component	complement	surface of	via C	
	enzyme cascade	bacterial and	receptors.	


	(deficient in C3=	fungal cell	Inflammation	
	die from	walls. But also	caused by	
	bacterial	activated via	C3a and C5a	
	infections)	classical	fragments	
		pathway		
		(antibodies).		
		But can do it on		
		its own.		
Mannose	The soluble	Mannose-	Lectin	Deficiency in
Binding	protein is a	terminal	pathway of	coding region,
ligand or	Collectin and is a	mannose units	complement	promoter,
protein	C-type lectin,	is a sugar	activation,	increased
(MBL/MBP)	which are	present on	cleaves C2	infection early
	characterised by	bacteria and	and C4.	childhood,
	collagen-like	fungi.	=opsonisation	synergise to
	domain		, cell	increase
			recruitment	infection in
				adults e.g.
				pateitns with
				cystic fibrosis.

Extra notes for table:

- Complement up-regulates adhesion molecules for recruitment
- C type lectin= defined as (means calcium dependent protein that binds to a carbohydrate)

- C-type lectins: Pulmonary surfactant proteins A,D also members of this family??
- Collectin= named cos of multiunit structure which increases capacity to do stuff.
- o Associated: MBL-associated serine protease 1, MASP-1
- o MBL-associated serine protease 2, MASP-2

PRRs: Surface

Macrophage mannose receptor (MMR) Scavenger receptors

Complement receptors (CR1-4)

Toll-like receptors: cell surface