8] ADVANCED DECISION MAKING

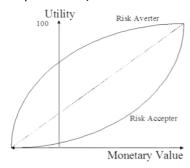
DECISION TREES

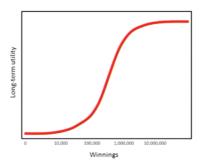
 Decision node = square box Chance node = circle Possible courses of action = lines between nodes

BAYES' THEOREM

- Based on idea that probabilities in decision trees are actually conditional probabilities
- Conditional probability of A occurring given that B has already occurred:

$$P(A \mid B) = \frac{P(B \mid A).P(A)}{P(B)}$$


• If there are several events possible: $X_i...X_j...X_n$, and the estimated probabilities of them occurring are $P(X_i)$, $P(X_i)$, $P(X_n)$, and an experiment is performed leading to event E occurring:


$$P(E) = \sum_{j=1}^{n} \left[P(E \mid X_{j}) \quad P(X_{j}) \right]$$

$$P(X_j \mid E) = \frac{P(E \mid X_j).P(X_j)}{\displaystyle\sum_{j=1}^{n} \left[P(E \mid X_j).P(X_j)\right]}$$

UTILITY

- EMV approach useful when applied to several small decisions
 - However, issues when applied to one off decisions that affect decision maker's resources
 - Eg. Not many people willing to bet their homes despite >50% of getting twice as much
- Utility Curve:
 - Used to convert dollar amounts on a decision tree to utility values before calculating EMV
 - Then proceed to calculate expected mean utility EMU (through normal procedure)

