TOPIC 1: TISSUE ORGANISATION AND TISSUE DYNAMICS

Tissue dynamics

(utilizes multiple cell fate processes – cell replication, differentiation, cell death, migration, adhesion)

Tissue homeostasis

- natural growth and regeneration of cells maintain equlibrium
- facilitated by adult stem cells within that environment
- different tissues have different regenerative capacity

Tissue repair (eg wound healing)

- Multiple stages; requires a lot of signaling to get cells to right location at right time
 - o Homeostasis and inflammation stage
 - macrophage, neutrophils kill bacteria and clean wound
 - chemotactic agents recruit other cell types to wound eg fibrobasts
 - Fibroblasts form ECM
 - Keratinocytes release other signals to recruit cytokines and GFs
 - Endothelial cells repair blood vessel
 - o Proliferation stage
 - Fibroblasts and keratinocyte proliferate to produce more skin
 - Fibroblasts release cytokines (interleukin 1) & GFs to cause keratinocytes to proliferate
 - Remodelling stage
 - Synthesis and degradation of collage and other ECM materials
 - Balance between factors that promote ECM formation & enzymes that breakdown ECM
 - Cell migration

Tissue formation (morphogenesis)

- TE aims to repair tissue that cannot be repaired by intrinsic repair mechanism → therefore have to replicate organ formation during embryogenesis
 - o Consider Origin of cells, GFs, differentiation, organ formation, interaction between cells and environment
 - Normal development gastrultion (3 germ layer formation though cell interaction, cell movement, morphogen signaling, gradients of TGFB growth factors and BMP4)
 - o Neural crest cells display extreme plasticity and is a good cell source for TE
 - o Eg bone formation

TOPIC 2: CELL FATE PROCESSES & CELL SIGNALLING

Cell fate processes – proliferation, differentiation, migration death, attachment

Cell replication/proliferation

o If growth is unconstrained:

$$\frac{dX}{dt} = \mu X \qquad \qquad \text{Where} \qquad \begin{array}{l} X \ (t) = \text{number of cells at a given time} \\ \mu = \text{growth rate} \\ t_{\text{d}} = \text{cell doubling time} \\ \times 12 - 30 \ \text{h for human cells in culture} \end{array}$$

- If constrained by media available (michaelis-menten)
- Constrained growth can be approximated by:

$$\mu([C]) = \frac{\mu_{Max}[C]}{K_m + [C]}$$

Where

 $\mu_{\textit{Max}}$ = maximum achievable growth rate [C] = concentration of limiting component K_m = concentration at which half maximal growth is achieved

- If constrained by space (eg monolayer formation, log growth)

Logistic Growth: $\frac{d\langle u\rangle}{dt} = \alpha\langle u\rangle(1-\langle u\rangle) \qquad \begin{array}{c} <\!\!u\!\!> \text{ = normalised mean cell density} \\ \alpha = \text{cell growth rate} \\ = 0.097 \text{ h}^{-1} \text{ (fibroblasts on TCP)} \end{array}$

Cell differentiation

- Measured by changes in gene expression, cell function/features, and mathematical model

$$\frac{\partial X}{\partial t} + \delta(a) \frac{\partial X}{\partial a} = 0$$

Cell death

- Can be death by apoptosis (natural homeostasis) or necrosis (induced)
- Natural apoptosis:

$$\frac{\partial X}{\partial t} = \alpha X$$

$$\alpha([C]) = \frac{\alpha_{Max} \cdot [C]}{K_m + [C]}$$