BIOL1040 Module 1

Principles of Cell Function

Membrane Structure and Function:

7.1

Cellular membranes are fluid mosaics of lipids and proteins

- The most abundant lipids in most membranes are phospholipids.
 - The ability of phospholipids to form membranes is inherent in their molecular structure.
 - A phospholipid is amphipathic:
 - Meaning that it has both a hydrophilic region and a hydrophobic region.
 - A phospholipid bilayer can exist as a stable boundary between two aqueous compartments because they're arranged to shelter the hydrophobic tails from the water while exposing the hydrophilic head.
- Most membrane proteins are amphipathic.
 - Hydrophilic regions are exposed to the extra and intra cellular environment, providing the hydrophobic regions with a nonaqueous environment.
- The fluid mosaic model states that the membrane is a mosaic of protein molecules bobbing in a fluid bilayer of phospholipids.

The Fluidity of Membranes

- Most lipids and some proteins can shift laterally (10⁷ times/second).
- Rarely a lipid will 'flip-flop' across the membrane, switching from one phospholipid layer to the other.
- Proteins tend to move more slowly, but they do drift.
 - Some are driven along cytoskeleton fibres in the cell by motor proteins.
 - Many others are immobile because they're attached to the cytoskeleton or extracellular matrix.
- Membrane fluidity changes with temperature.
 - As the temperature decreases, phospholipids settle into a closely packed arrangement and the membrane solidifies.
 - The temperature at which this happens depends on the types of lipids it is made of.
 - Unsaturated = lower solidifying temperature.
 - They cannot pack together as closely due to kinks in the lipid tail.
 - Membrane more fluid.
 - The presence of steroid cholesterol acts as a fluidity buffer in the membrane of animal cells.
 - Influences membrane fluidity at different temperatures.
 - At high temperatures, it makes the membrane less fluid by restraining phospholipid movement.
 - At low temperatures, it hinders the packing together of phospholipids.
- Membranes must be fluid to work properly as it impacts both permeability and movement of membrane proteins.
 - When solidified, enzymatic proteins in membrane may become inactive.
 - If too fluid, protein function is also not supported.

Membrane Proteins and their Function:

- Membrane proteins determine most of the membrane's function.
 - Different cells have different membrane proteins.
- There are two major types of membrane proteins:
 - Integral proteins
 - Which penetrate the hydrophobic interior of the lipid bilayer.
 - The majority are transmembrane proteins and others just extend partway through cell membrane.
 - Peripheral proteins
 - Are not embedded in the lipid bilayer.
 - Instead they're appendages loosely bound to the surface of the membrane.

- The 6 Major Functions of Membrane Proteins:
 - Transport
 - Assists in transporting molecules across the cellular membrane.
 - Enzymatic activity
 - Catalyses chemical reactions.
 - Signal transduction
 - Protein may act as a receptor, receiving signals from molecules in the extracellular environment.
 - Cell-cell recognition
 - Some glycoproteins serve as identification tags that allow binding.
 - Intercellular joining
 - Membrane proteins of adjacent cells may hook together.
 - Attachment to intra/extracellular environment.
 - Helps to maintain cell shape and stabilises cell location.

7.1 Summary

- In the fluid mosaic model, amphipathic proteins are embedded in the phospholipid bilayer.
 - Proteins with related functions are often clustered together in patches.
- Phospholipids and some proteins move laterally within the membrane.
 - The unsaturated hydrocarbon trails of some phospholipids keen membranes fluid at lower temperatures, while cholesterol helps membranes resist changes in fluidity caused by temperature changes.
 - Differences in membrane lipid composition, as well as the ability to change lipid composition, are evolutionary adaptions that ensure membrane fluidity.
- Integral proteins are embedded in the lipid bilayer; peripheral proteins are attached to the membrane surface.
 - The functions of membrane proteins include transport, enzymatic activity, signal transduction, cell-cell recognition, intercellular joining, and attachment to intra/extracellular environments.
 - Glycoproteins and glycolipids on the exterior side of the plasma membrane interact with the surface molecules of other cells.
- Membrane proteins and lipids are synthesised in the ER and modified in the ER and Golgi apparatus.
 - Inside and outside face of membranes differ in molecular composition.