Lecture 1 – Introduction and Review

Objectives:

- Understand the basic features of recombinant expression systems used in modern research
 - Recombinant proteins; state of the art, problems, new developments
 - Antibodies, design production, engineering
 - o Personalised medicine: gene therapy approaches now and beyond
- Be able to describe why different systems are chosen for different proteins and provide examples

Summary:

- Why make proteins recombinantly?
 - Unavailable from endogenous sources
 - o For more efficient and selective purification
 - Quality control → large batches
 - Optimise activity/efficacy → by adapting the protein to be a better therapeutic protein
- Possible heterologous hosts for protein expression
 - o Bacteria; Yeast (Pichia sp.); Plants; Baculovirus; Cultured mammalian cells; Animals
- Bacteria
 - Pros: Widely used; Easy to manipulate; Rapid growth; Cheap; Many commercial vectors and tags to add to protein codes to enhance purification
 - Cons: No post-translational modifications; High endotoxin content; Many proteins expressed are
 insoluble → Creates inclusion bodies = dense particles of insoluble proteins; the formation depends on
 protein synthesis rate and growth conditions; usually not quite the right folding conformation (can
 refold BUT poor success rate)
 - Site of expression
 - <u>Directly in the cytoplasm</u> → E. coli cytoplasm is a reducing environment = no proper disulphide bonds
 - Site of production of 10% of the total cell protein
 - Secretion in the periplasm or medium (a layer around the cytoplasm) → the target protein is fused to peptides/proteins targeted for secretion; this area is more oxidising so some proteins can be folded better
 - Bacteria have limited capacity for secretion (0.1 0.2% total cell protein)
- Expression of a fusion protein
 - Lots of proteins are made in a cell, but usually only one is wanted. Even though in most cases the
 protein of interest is far over expressed, to aid purification a unique tag will be added to the protein
 code, which can be identified while part of the protein but also can be cleaved once the proteins are
 purified
 - Given the knowledge of the tags proteins biochemistry is known, a source to bind to it, or to which it will bind can be used to isolate the protein → this also means that nothing needs to be known about the target protein
 - o Common tags
 - Glutathione S-transferase (GST)
 - Maltose binding protein
 - His-tag \rightarrow separated by protease cleavage site for on-column cleavage
 - Advantages
 - Improve protein yield
 - Prevent proteolysis
 - Facilitate protein refolding
 - Increase solubility
 - Ease of purification
 - Disadvantages
 - Lower protein yields → cleavage may not be complete or cleaves within the protein
 - Alteration in biological activity
 - Cleavage/removing the fusion partner may require expensive proteases
- Insulin
 - Uses
 - Single gene hormone, secreted by beta cells of islet cells of Langerhans of the pancreas
 - Its secretion is stimulated by glucose, amino acids and fatty acids

- Binds to insulin receptors on cells and stimulates uptake and storage of fuels
- Production
 - Trafficked through the secretory pathway: ER → Golgi → secretory vesicles
 - Disulphide bonds are present, NO glycosylation
 - Proteolytic processing → remove signal sequence and C-peptide → leaves A and B chains
- Initially obtained insulin from pigs → injected into patients several times/day in crystalline form
 - Protamine → reduced insulin solubility → slows absorption → prolonged action
 - Zinc → prolongs effects
 - However, patients began to develop immunity to porcine and bovine insulin
 - Due to the impurities and the pro-insulin forms
 - Demand from animals also not meeting supplies
- Bacterial recombinant insulin = Humulin (Gentech)
 - Using E. coli made the A chain in one batch of bacteria and the B chain in another → purified → oxidised together
 - BUT, no secretory pathway for processing and no S-S capacity in the cytosol
- Yeast (eukaryotic) recombinant insulin (Novo Nodisk)
 - Use S. cerevisae for its secretory pathway, BUT it lacks processing enzymes for removing the Cpeptide
 - The signal sequence is cleaved, this molecule is then secreted
 - Instead of the C-peptide, is has 2x arginine and a lysine residue → cleaved
 - First <u>arginine</u> is cleaved by **trypsin** AND then the <u>Arg + Lys</u> on the *B chain* is cleaved by carboxypeptidase
- Erythropoietin (EPO)
 - Features
 - Glycoprotein hormone involved in haematopoiesis
 - Synthesised in the kidney → stimulates RBC production and maturation in bone marrow
 - Used as a treatment for anaemia (in all KD/dialysis pt's, pt's on chemo and with HIV)
 - o Structure
 - Glycosylated protein → required for EPO action → binding to EPOR
 - Three N- and one O- glycosylation sites (40% of total mass)
 - Given glycosylation → requires mammalian cell culture
 - Glycosylation
 - Most proteins synthesised in the rER are glycosylated by the addition of a common N-linked oligosaccharide
 - Major synthetic function of the ER/golgi + most proteins made in the ER are glycosylated
 - ~50% of eukaryotic proteins are glycosylated, for their trafficking, folding, stability and function
 - ~700 mammalian enzymes are involved in various glycosylation patterns (glycans) on proteins
- Mammalian tissue culture
 - Requires: Dulbecco's modified Eagle's media (glucose, vitamins, salts, phenol red) + extra factors (foetal calf serum [growth hormones]) → grown at 37degress under 5% CO2
 - Production can be modified using serum free media and defined growth factors → \$\$
 - Cells cultured: primary and transformed (immortal) lines
 - Must use mammalian specific plasmids
- CHO (Chinese hamster ovary cells) cells in protein expression
 - o Defector standard of good manufacturing practice (GMP)-certified production
 - o Able to use serum-free media
 - Can produce 10g/L of protein
 - High-density large-scale fed-batch cultivations are developed and scale-up technology is well established
 - o **CONS:** low doubling time (14-23h), low cell concentrations
- Atryn = recombinant anti-thrombin alpha = anti-coagulant
 - Expressed under the control of beta-casein promoter → transgenic expression in goat milk (easy)

Characteristics	Bacteria	Yeast	Mammalian
Cell growth	Rapid ~30minutes	Rapid ~90minutes	Slow ~24h
Cost	Low	Low	High
Expression	High	Medium-High	Low-Medium
Protein folding	Not reliable	Usually reliable	Very reliable
S-S	Poor	Good (secreted)	Good (secreted)
Glycosylation	None	Simple N-linked	Complex
Phosphorylation	No	Yes	Yes