Lecture 2 – Induced innate immune responses

Objectives:

- Understand key differences in innate versus adaptive immunity
 - o Cells, timing, memory
- Understand early events in activation of innate immune cells
- How chemokines are involved in recruitment of cells to sites of inflammation
- Adhesion molecules, extravasation of leucocytes
- Actions of pro-inflammatory cytokines

Summaries:

- Physical and chemical barriers
 - Mechanical
 - Epithelial cells joined by tight junctions
 - Flow of air or liquid (exhalation/flushing [urination + tears]), cilial beating (nose + lungs)
 - Chemical
 - Low pH, fatty acids, enzymes (pepsin, DNase) + pulmonary surfactants
 - Microbiological
 - Normal microbiota → compete for space, nutrition and resources
- Pathway of infection
 - Inflammatory inducers (bacterial LPS, ATP, urate crystals) → Sensor cells (macrophages, neutrophils, DCs) → Mediators (cytokines + cytotoxicity) → Target tissues (produce antimicrobial proteins, antiviral proteins + killing of virally infected cells)
- Immune cell lines
 - Originates from the haematopoietic stem cell (HSC) \rightarrow two cell lines \rightarrow common myeloid (\rightarrow innate blood cells) and lymphoid (\rightarrow T and B cells) progenitors
- Types of immune cells
 - o Macrophages: Phagocytose, degrade, present antigens to T and B cells
 - <u>Dendritic Cells:</u> key antigen presenting cells; has both MHC class I and II; only cell able to activate naïve T cells; rarer than macrophages; produce lots of cytokines and soluble mediators
 - o Neutrophils: large numbers found in the blood and at sites of infections; produces defensins
 - o Eosinophils: essential in parasitic attack, also utilising IgE
 - o <u>Basophils:</u> important in allergic and anti-parasitic defence
 - Mast cells: mediate hypersensitivity reactions
- Comparing the innate and adaptive immunity
 - o Innate immunity → no time lag (immediate), not hugely antigen specific, no memory
 - \circ Adaptive immunity \rightarrow lag period, antigen specific, develops memory
- Viral infection
 - o Initially viral load is keep from growing by innate factors → production of IFN-a + b, TNF-a and IL-12 and NK-cell mediated killing of virally infected cells
 - o Then after ~5 days the adaptive immune response is activated → T cell mediated killing of cells
- Macrophage activation by pathogens
 - PAMPs → PRRs → activated macrophage to engulf the pathogen + process + present → release cytokines and chemokines to attract other innate cells
 - Phagocyte digestion of pathogens
 - Binding of PAMP to PRR → aggregation of surface receptors → intracellular cascade → endocytosis into an endosome → fusion with lysosome → phago-/endo-lysosome → oxidative species and cytotoxic agents → degrade → present
 - Cytokines secreted by macrophages
 - <u>IL-1:</u> activates endothelium; tissue destruction; Systemically → fever (innate response to kill bacteria) and production of IL-6
 - I<u>nflammasome</u> production
 - TNFa: potent cytokine; activates endothelium for IgG, complement, cellular access; activate adaptive and innate cells; systemically \rightarrow fever, mobilise metabolites and causes shock/sepsis
 - <u>IL-6:</u> activates lymphocytes; stimulate antibody production; Systemically → fever and acutephase protein production
 - CXCL8: chemokine; chemotactic factor (attracts neutrophils, basophils and T cells)
 - IL-12: activates NK cells; differentiation of CD4 T cells → Th1 cells

- Macrophage activation → co-stimulation of T cells
 - Constant presentation of antigens (self or otherwise) to the surface
 - Infection, but DCs not active
 - Presents to naïve T cell → not enough co-stimulation → minimal response
 - o Pathogens block DC activation to prevent adequate T cell activation
 - Infection, and DCs are active
 - Present to naïve T cell → interactions of CD80/86 with CD28 → activation
- Dendritic cell maturation
 - Activated by pathogen in the periphery → endocytose, process + present → move to LN to T cells
- Innate response influences the adaptive immune response generated
 - Viruses + bacteria \rightarrow DC \rightarrow IL-12 \rightarrow NK cell \rightarrow IFNg \rightarrow CD4 + IL-12 + IFNg \rightarrow Th1 \rightarrow IL-1, IFNg, TNFb
 - Other pathogens \rightarrow DC \rightarrow NK \rightarrow IL-4 \rightarrow CD4 + IL-4 \rightarrow Th2 \rightarrow IL-4, IL-13, IL-5
- Chemokines
 - o Chemoattractant cytokines attract cells to the site of inflammation via concentration gradients
 - Small molecules that bind G-protein couple surface receptors
 - One chemokine receptor can receive many chemokine ligands → made and act on many cells → different cell types have different effector changes after binding
 - → LIV and chemokines → co-evolution, thus, HIV has harnessed the CCR5 (chemokine receptor usually binding chemokine 1alpha) and CXR4 (usually binds SDF-1) to access CD4 T cells
- Phagocyte extravasation
 - Cytokines and chemokines released activate endothelium and attract leukocytes (neutrophils), respectively
 - Tissues are made leaky, loosen tight junctions, and upregulate certain ligands and receptors
 - o Activated endothelium expresses selectin receptor and integrin ligand
 - Tether → Roll → Activate → Arrest → Move
 - Adhesion molecules
 - On endothelium: P- and E-selectins, ICAM-1
 - On innate leukocytes: LFA-1 (integrin)
- Pro-inflammatory cytokines
 - IL-1b, IL-6, TNF-a → activates complement opsonisation, phagocytosis, viral resistance, increased antigen processing, activate adaptive immune response; Systemic infection
 - Interferons (class I IFN (a and b) and IFNg)
 - Critical in antiviral immunity
 - Resistance to viral replication in all cells, increase MHC class I (endogenous; CD8+), activate macrophages and DCs, activate NKs → kill infected cells
- Innate immune system response to infection immediately
 - Innate immune system
 - Pre-formed, not antigen specific, BUT broadly specific effectors
 - Immediate but no memory formation
 - Germline receptors
 - Use patterns to generate receptors → recognise PAMPs and DAMPs from self cells
 - Adaptive immune system
 - Always activated
 - Activated from Day 2 → takes time for clonal expansion, etc.
 - Lag period
 - Highly antigen specific (one unique antigen recognised/receptor/cell) and will develop memory
 - Recombined germline → adaptive receptor production