## Lecture 28 – Introduction to Pain

To treat pain, we need to understand how it's processed (Descartes)

Described the reflex arc BUT pain is **complex** – different types

An unpleasant sensory + emotional experience associated with actual/potential tissue damage

Pain experience requires neural processing + conscious perception

# **Different types of pain**

- Nociceptive (protective)
- Inflammatory (amplification) pain signal persists (normal physiological response)
- Neuropathic (system damage) chronic pain
  - Overstimulation of pain system and pain signals becomes embedded within the nervous system

Pain depends on the **individual** – different coping mechanisms, thresholds Not just injury – some are able to modulate pain experience with brain processes

When injury happens...

Control analgesia in early/acute stages of injury → reduce amount of post-traumatic stress

Regional anaesthesia

#### Pain Transmission

## Cascade effect:

**Inflammatory** activation from injury → Receptor activation (**transduction**) → Neural **conduction** → Spinal cord + brain **modulation** → **Perception** of pain

## It's **dynamic**

- Activation + plasticity
  - o Relay
  - o Amplification
  - Attenuation of pain signal
  - Nervous system may be re-shaped
  - Variable responses in individuals (genetic currently studied)
- Motor/autonomic reflexes triggered
  - o Reflex withdrawal
  - Hypothalamic/adrenal responses
- Peripheral sensitisation ensues
  - Enhanced state of excitability = hyperalgesia
  - o Contributes to **protection**
  - o Leftward shift of pain stimulus threshold
  - o Reduced mobility/function until healing occurs

# Nociceptors

Sherrington = developed idea of specific nerve endings for pain

Specific nociceptors for noxious stimuli (mechanical, thermal, chemical)

#### TRPV1 channels

- Transient receptor potential
- Implicated in sensitisation
- Responds to acid stimuli, capsaicin, temperature (heat)
- Look at domains under the receptor like AKAP79
  - Develop drugs that interact with these
     + modulate the receptor
- Activates PKA and PKC

# Acute injury – tissue response

- Cell lysis
  - o H+ (acid) + ATP released
  - Bind to nociceptors → activation
- Reflex axonal release
  - Substance P
  - o CGRP
- Inflammatory response
  - Mast cell
  - Neutrophil
- Multiple mediators in damaged tissues
  - o Serotonin
  - $\circ \quad \text{Histamine} \\$
  - o Bradykinin
  - Prostaglandins (COX2 induction)
    - Some drugs target the induction
    - E.g. aspirin
  - o Cytokines

By understanding physiology occurs, can develop drugs against this

# Peripheral sensitisation

Nervous system activated

- Nociceptors become sensitized
- Induce cellular transcription
- Protein synthesis
- Receptors + ion channels upregulated

Get hypersensitivity – hyperalgesia (may be protective) + allodynia (pathological)





## Visceral pain

- Nociceptors produce diffuse, non-localised area of pain
  - o Pain may be referred
- Convergence hypothesis
  - Somatic pathway crossover
  - Similar embryological origin
- E.g. appendiceal inflammation
  - o Initial inflammation
  - Diffuse abdominal pain
  - o As it becomes more inflamed it hits peritoneum → localised to right ileum fossa
- E.g. Cardiac ischemia
  - o Adjacent referral to arm, neck, jaw

## Transmission

- Nociceptors
  - O Aδ fibres = fast, acute, localised, sharp mechanical/thermal pain
  - o **C fibres** = slow aching, throbbing, burning pain
- Filtering mechanisms to attenuate nociceptor signal:
- 1. Gate control theory

There are interneurons within nerves going to spinal cord that could attenuate signal



- Interneurons can inhibit pain signal (attenuates it)
- Neurotransmitter is an endogenous opioid (**β-endorphin**)
  Throughout the NS, opioids play a key role

# <u>Opioid receptor</u> – specific structure understood

- Use opioids like morphine to target spinal cord (where most of them are in substantia gelatinosa)
- Act pre-synaptically to decrease NTS release
- Act **post**-synaptically to **hyperpolarise** dorsal root neurons
- Receptor **<u>subtypes</u>**: μ, δ, κ, nociceptin, orphanin FQ

## Central potentiation

Integration in spinal cord dorsal horn via relay + inhibitory neurons

Primary afferents go to different laminae of dorsal horn – interactions between interneurons

Identified neurotransmitters with immunofluorescence >

Lots of inhibitory neurons (especially **GABA**ergic + **glycine**rgic neurons) – modulate pain transmission

Not only neurons – also involve **microglia + astrocytes**Also can modulate