1. BRAIN & NEURONAL COMPONENTS

- Neurons require blood vessels for constant E supply → cannot store E
- Glia have complex structure cover surface of neurons & contact blood vessels
- Astrocytes:
 - Fibrous: among bundles of myelinated axons ∴ in white matter
 - Protoplasmic: in grey matter
- Radial Glia = dvlpment → first to develop from neural progenitors
- Microglia are immune cells : injury response → macrophage derivatives
- Satellite cells acts as support cells in PNS
- Schwann cells & oligodendrocytes produce myelin
- Ependymal cells line ventricles in brain → barriers b/w compartments; source of new neurons

ASTROCYTES

- Hold structure together number of astrocytes per neuron ↑ w brain complexity
- Synapse is only region of CNS free of glial processes
- Each Astrocyte has own discrete territory → little overlap b/w astrocytes
- Siphon processes attach to blood vessels
 - Produce blood-brain barrier to control selective permeability of molecules to brain
 - Brain only wants/needs certain substances
- Circumventricular organs have leaky blood-brain barrier → communicate w periphery & control body env
- N.B: Astrocyte as source of E will likely change blood flow in response to E dependent activity

ECF homeostasis:

- Astrocytes = key components of info processing
 - Rapidly remove neurotransmitter from synaptic cleft to prevent \uparrow activation of post-synaptic cell
- Synaptic activity results in extravasation of K+
 - memb potential of glia determined by K ∴ small change in ECF K+ = changes in voltage
 - Depolarization occurs when [K+] changes
- Remove excess K⁺ from ECF after AP is fired → possess Na/K ATPase to assist spatial buffering
 - K⁺ released from cell is enough to change ECF comp.
 - ↑ K = change in excitability : change in info processing
 - 3mM [K⁺] needed for normal neuron fctn
- Astrocytes connected ∴ transmit ions by gap jctn to dissipate through syncytium
 - Gap jctn = 6 connexin subunit proteins forming regulated pore
 - Gap jctn only discriminate molecules based on size
- Inward current of K+ induces local depol of glial cells → spread throughout cell and to neighbouring glia via gap jctn
 - K released into ECF at other regions
- Astrocytes can transmit electrical currents

Responsive Astrocytes

- Astrocytes have transmitter receptors ∴ capable of responding to signals
 - Send info b/w themselves via changes in intracellular [Ca²⁺]
- Ca²⁺ = key signalling mediator ∴ activation of intracellular Ca²⁺ via IP₃ & release of intracellular Ca stores

• Activation of neighbouring occurs via gap jctn

Reactive astrocytes:

- Possess receptors for transmitters
- In response to stimulation, glia release gliotransmitters
 - Signal via ATP binding to receptor of distant cell
- Gliotransmitters released by exocytosis ∴ have machinery for vesicular release
 - Transmitter pumped into synaptic-like vesicles
 - Cluster at release sites associated w exocytotic proteins (SNAP, SNARE, VAMP)
- Dense core secretory granules also present nucleotides and peptides
- Exocytosis slower than in neurons → triggered by IP₃ induced changes in intracellular Ca
- Signalling confined b/c confined territories of glia
- Gliotransmitters allow integration of info in response to stimuli
- Info from synapse moves b/w glia via intracellular Ca2+ & transmitter release
 - ∴ ability to modulate neighbouring synapse

RESTING MEMBRANE POTENTIAL

- Neurons = excitable cells
- Imbalance of charge a/c membrane ∴ potential diff allows signalling & AP
- Current = mvmnt of charged ion → can be injected into cell to change RMP
- Mvmnt of current determines direction of potential change
 +ve ion = +ve current
- Graded potentials: local fluctuations in memb potential due to incoming signals
 - Depol or hyperpol \rightarrow amnt of current α size of potential change
- Reaching threshold generates AP → independent of potential size
 - AP = info processing unit of nervous system
- Imbalance of ions in system
 - [K] higher intracellularly
 - [Na] [Ca] [Cl] higher extracellularly
- N.B: Ca has v large [] gradient → small intracellularly b/c taken into organelles
- Ions move a/c [] gradient ∴ E stored along memb
- Ability to communicate derived from gradient of ions

ION TRANSPORTERS

- Ion transporters determine [] gradient
- Pumps use ATP to move ions against [] gradient
 - Na/K ATPase = electrogenic pump using 70% of brain E
 - Binds ions & changes cong. in response to E binding
- Ca2+ pump exchanges H ions
- Na/K pump activity occurs at α Subunit
 - Multiple transmemb spanning domain protein → single aa chain
 - Various binding sites → Na/K site, phosphorylation site for regulatn, ATP binding,
 - Oubain binding can block activity
 - β subunit used for modulation & trafficking to various sites
- Pump establishes Na/K [] gradient
- Ion exchangers use drive of ions from ion gradient to move/ exchange molecules
 - Na/K/Cl exchanger critical for setting intracellular Cl gradient)
- N.B: Ion exchangers have binding sites for ion → change conformation to transport ions like pumps whereas ion channels are just holes in memb
- At rest, memb selectively permeable to K