THEME A: BLOOD PRESSURE - CAUSES & CONSEQUENCES

CORONARY RISK FACTORS

- Established risk factors are known to cause CHD
 - Age, cholesterol, BP, smoking, diabetes, BMI
- Reducing factors will ↓ risk of CHD
- Large ♥ size, clotting factors (homocysteine, fibrinogen), lipids = not established risk factors
- Risk factors aggregate ∴ present together
 - Weight gain promotes ↑ BP, insulin resistance (pre-diabetic stage)
 - Combining more factors will ↑ death rate
- Age is single most important risk factor → 80% risk in 65+ y/o
- Men have ↑ individual risk die more frequently of CHD
- Women have reduced rates : "protected" before menopause
 - Hormone therapy doesn't reduce CHD
- 4-fold ↑ in risk w̄ familial cases → shared genes & env factors
- E.G: IRS-1 gene related to CHD ₩ relation to insulin resistance, hypertension & impaired endothelial fctn
- Lipoproteins carry lipids
 - LDL + VLDL take lipids from liver to systemic circ. ∴ deposition in arteries
 - HDL take lipids back to liver $\therefore \uparrow$ HDL = \downarrow risk
- ↑ Weight and central adiposity = ↑ risk for CHD, ↑ BP and diabetes
- N.B: stress is unproven factor
- ↑ alcohol = ↑ risk but 2 units/day may ↓ risk by affecting liver
- Individual graded risk is relative measure of risk comparative to individuals in society with lowest risk factors ∴ Small variation from lowest level will present as increased risk
- N.B: More deaths occur in the large number at modest risk majority of the popn lies at average risk whereas only a small number is present at the highest risk
- Wealth and nutrition play key role in CHD
 - Dependent on ability to afford health care and adequate nutrition
 - Higher socio-economic groups = decline in CHD
- Low wealth correlated \overline{w} infectious disease & poor life expectancy
- Adequate nutrition = adequate calories
 - Poor nutrition = excess calories → may lead to weight gain

BP VARIATION

- MAP = TPR x CO
 - $CO = SV \times HR$
- Variation b/w diff popn due to env changes
- Differences b/w individuals in a popn due to genetics but within individuals = env
 - B/w individuals = genetic changes
- Genetic variation b/w individuals w/n same popn is greater than difference b/w popn
 - Individuals differ by 1/1000 sequences whereas diff popn have the same variants
 - Effect of env more apparent b/w popn
- Unimodal distribution in popn → skewed t/w upper values
- High BP predisposes to diseases & death
 - CHD, stroke
 - Cardiac hypertrophy due to ↑ stress & atherosclerosis → causes ↓ efficiency
- ↑ BP produces physical stress on arteries → leads to atherosclerosis
 - Hardening of arteries can lead to ♥ attack or stroke
- ↑ BP can cause haemorrhage in small vessels
- Cardiac Insufficiency leads to ♥ failure → may be due to hypertrophy
- Kidney failure damage to glomerular capillaries & replaced by non-fctn connective tissue
 - P in kidneys is normally higher than rest of body ∴ ↑ BP will significantly ↑ glomerular P
- Men have higher BP on average w̄ ↑er individual risk of CV diseases
- BP ↑ w̄ age rapid incline after birth & puberty due to growth
 - At birth, both males & females have same avg. BP
 - females have ↑er avg. at puberty → perhaps b/c puberty is reached first in females

- · Unacculturated individuals avoid rise in BP in adulthood
- Diastolic BP falls w
 age but Systolic ↑ ∴ ↑ Pulse P
 - Pulse P determined by Stroke Volume & artery compliance
 - Hardening of arteries \overline{w} age = greater rise in P \rightarrow lack of expansion to accommodate
 - Stiff arteries cause blood to move quickly through vessels ∴ less blood present in diastole
- Larger body size = ↑ BP related to both height & weight → mean of BP related to mean body size
 - \uparrow weight and height = \uparrow vasculature \div \uparrow resistance of flow and BP
 - Weight loss can ↓ BP
- BP varies on minute-minute, daily and seasonal basis
- Minute variation dependent of body stress & strain changes in activity = BP fluctuation
- BP is 20mmHg lower at night \overline{w} less minute-minute fluctuation
 - Greater sympathetic activation during day ∴ ↑ pulse rate
 - BP may be controlled by Renin-Angiotensin system at night
- 3mmHg difference in BP from Summer to Winter
 - Systemic vasodilation in summer may cause ↓
 - Sweating leads to ↓ blood volume : ↓ SV
 - Lifestyle differences during seasons may influence weight, diet & physical activity

ENV FACTORS

- Genetic r/ships correlate to BP similarities b/w individuals
 - degree of env influence → individuals with same degree of genetic association have varying correlation
 - DZ & MZ twins share uterine env ∴ ↑ correlation but siblings have ↓er correlation
- Generation gaps, dietary diff = changes in BP correspondence despite genetic sim.
- Observational studies: watch popn overtime and examine changes in env
- Interventional studies: change env to view correspondence w BP
 - migration studies indicate BP changes w env
- Sodium: low salt diet ↓ BP on hypertensive subjects
 - weak correlation b/w popn (0.04 mmHg/mmol Na per day) → indistinguishable w/n popn
 - Urinary salt reflects intake → weak correlation to BP b/w popn
 - Steeper r/ship $\overline{w} \uparrow \!\!\!\! \uparrow$ age due to kidney insufficiency lowered BP \overline{w} diuretics
- *Alcohol:* ↑ intake ↑ BP independent of other factors
- Reversible w̄ ↓ intake involves sympathetic nerve stimulation & ↑ HR
- Potassium: ↑ intake = ↓ BP weak correlation
 - More significant w̄ Na/K intake ratio ∴ reflects diet
- Calcium & Mg have no proven impact on BP
- Fats: no r/ship b/w BP & fat intake
- Omega3 ↓ BP in hypertensives
 - May involve vasodilation & prostaglandins involved in vascular control
- Vegetarians have $\sqrt{\text{er BPs}}$ due to $\sqrt{\text{fat}}$ intake **or** alternate compounds in vegetables
- Exercise: BP lower w̄ ↑ fitness may involve sympathetic
 - ↑ fitness may mean that sympathetic NS doesn't need to be highly active
- Smoking: ↑ BP
 - long-term smokers have \downarrow BPs Lower BMI b/c appetite suppression $\div \downarrow$ weight = \downarrow BP
- Popn vary in mean BP → Social, psychological, biological factors vary
 - Socio-economic status has \uparrow impact in BP & CV risk \rightarrow governs diet and health care

GENETIC FACTORS

- Variation in genetic sequences influence BP as phenotype
- Extremely rare coding mutations cause major genetic diseases ₩ ↑ BP impacts
- Rare coding mutations associated w̄ moderate effects → 5mmHg
 - Changes to coding sequences = change to protein production or fctn
- Common variants in non-coding regions have immeasurable effects ightarrow 1mmHg
- BP loci account for less than 5% of heritability & expected gene effect
 - Marker overlap & degree of gene expression not considered