Topic 8 - Chi squared

Chi-Squared distribution:

1. Test of homogeneity / proportion

> Preconceived ideas about proportion

H0: Each population has the same proportion of observations

H1: At least one of the population has a different proportions of observations

2. Test of independence

> To determine if there is an association (X perceived ideas)

H0: The variables of interests are independent (no asso)

H1: The variables of interests are not independent (asso)

- Models a variable which can only take positive values
- Skewed in distribution
- $X \sim X_n^2$, with n degrees of freedom
- Contingency Table: A table that is used to record relationships between categorical variables
- **Expected frequencies**: The number of times that a category is expected to appear.
- **Observed frequencies** (sample frequencies): The number of times that a category appears in the data.
- Goodness-of-fit Test: A test of how well observed data matches a specified, expected probability function.

Contingency Table (4x4)

- A table that is used to record relationships between categorical variables
- Is there a link between hair colour and eye colour?

Mosaic plots

- To detect whether datasets are independent or not
- Block with similar widths along y axis -> independent (no asso.)
- Block with different widths along y axis -> dependent (asso.)

Association plots

Test of independence / proportion

1. Hypothesis

Test of independence:

H0: The variables of interests are independent (no asso.)

H1: The variables of interests are not independent (asso.)

Test of proportion:

H0: Each population has the same proportion of observations

H1: At least one of the population has a different proportions of observations

- 2. Level of significance $\alpha = 0.5$
- 3. Check assumptions:
 - No cell has expected frequencies <1
 - No more than 20% of cells have expected frequencies <5
 - *In the case of above then the probability of a type I error occurring will increase*
 - *We may combine cells to ensure these assumptions are met*
- 4. Calculate Expected frequency = $\frac{Row \ total \ x \ Column \ total}{Grand \ total}$ (Create a new table)
- 5. Calculate Test statistic (X_{ob}^2)

$$\chi^2 = \sum_{i=1}^n \frac{(O_i - E_i)^2}{E_i}$$

Where O is the observation, E is the expected frequency, n is the number of cells

6. Calculate d.f.

d.f. = (rows-1)(columns-1)

- 7. Obtain X_{cri}^2 from the table using d.f. & $\alpha = 0.5$
- 8. Compare X_{ob}^2 and X_{cri}^2

If $X_{ob}^2 < X_{cri}^2 \rightarrow$ Fail to reject Null

If
$$X_{ob}^2 > X_{cri}^2 \rightarrow \text{Reject Null}$$

<u>OR</u>

Obtain p-value from X_{ob}^2 and d.f.

P-value $< 0.05 \rightarrow$ Reject Null Hypothesis

P-value $> 0.05 \rightarrow$ Fail to reject Null Hypothesis

- 9. Statistical conclusion
- 10. Biological conclusion

e.g.

Is there an asso between general/advanced and pass/fail? (Test of independence)

	General Maths	Advanced Maths	Total Row
Pass	7	19	26
Fail	8	6	14
Total Column	15	25	40

- \bullet $\alpha = 0.5$
- H0: no asso
- H1: asso
- Expected Frequency = $\frac{(26+14) x (15+25)}{40}$

= 40

	General	Advanced
Pass	$\frac{26 \times 15}{40} = 9.75$	$\frac{26 \times 25}{40} = 16.25$
Fail	$\frac{14 \times 15}{40} = 5.25$	$\frac{14 \times 25}{40} = 8.75$

•
$$X^2 = \sum_{i=1}^{\infty} \frac{(O_i - E_i)^2}{E_i}$$

= $\frac{(7 - 9.75)^2}{9.75} + \frac{(19 - 16.25)^2}{16.25} + ... + \frac{(6 - 8.75)^2}{8.75}$
= 3.55

- d.f. = $(2-1) \times (2-1)$ = 1
- From the table, the critical value = 3.84, observed value = 3.55
- $\bullet \quad X_{ob}^2 > X_{cri}^2$
- ∴ Fail to reject Null
- No asso

- *irrespective to = no asso (independent)*
- *depends on = association (not independent)*

T-test VS Chi-square

T-test	About comparing numbers
Chi-square	Counts or frequency of data in different categories