Soil Mechanics Summary

Rock Cycle

Soil Profile

- Topsoil
- Subsoil
- Transition
- Bedrock

Clay minerals

- 2 basic units
 - o SiO4
 - o Al(OH)3
- 3 main minerals
 - o Kaolinite (weathered tropical soil)
 - o Illite (moderate rainfall)
 - o Montmorillonite (arid areas, highly water absorbent

Phase relationships

- Soil is soils and voids, filled with air or water
- Relationships
 - Void ratio = Vv/Vs
 - Saturation rate = Vw/Vv
 - Moisture content (m) = Ww/Ws

_

Classifications

- Cohesive clays
- Non-cohesive everything else

Soil type	Grain size (mm) Min Max	
	IVIIII	IVIAX
Gravel	2	60
Sand	0.06	2
Silt	0.002	0.06
Clay	-	0.002

0

- Fine soils:

0

Stresses in soil

Deformation is a function of stresses applied to soil

- Effective stress: F' = F Fw
- Vertical and horizontal stresses:
 - Effective vertical stress:

$$\sigma_{v}' = \sigma_{v} - u$$

where:

- σ'_v : Effective stress
- σ_{v} : Total stress u : Pore water pressure = $\gamma_{w}z_{w}$
- Horizontal stress by earth pressure coefficients:

$$\sigma_h' = K_0 \times \sigma_V'$$

where:

 \bullet K_0 : Coefficient of lateral earth pressure at rest

Total horizontal stress:

 $\sigma_h = \sigma_h' + u$

Settlement and consolidation

Coefficient of volume change

$$m_v = \frac{\Delta V/V}{\Delta \sigma'}$$

- Depends on stress level

Rate of settlement

- Granular soils is instant, fine grained soils settle over a long time

Consolidation model

- Consolidation over time