Lecture 1 – Ischaemic Heart Disease

Objectives:

- Understand the epidemiology of ischaemic heart diseases (IHD)
- Understand the risk factors and causes of IHD
- Understand the pathophysiology of IHD
- Understand the common presentations of IHD
- Understand the basic investigations modality/treatment outline

Summary:

Normal Anatomy

- 3 layers of tissue
 - o Pericardium the "bag", membranous coat that the heart sites in
 - Serous pericardium (Parietal + Visceral) + Fibrous pericardium
 - Myocardium cardiac muscle, consisting of cardiomyocytes
 - Endocardium lining of endothelium within the heart
- Haematoxylin and Eosin staining
 - Cardiac muscle ordered muscle fibres, one centrally located nuclei, intercalated disks + branched
 - o Skeletal muscle ordered muscle fibres (can see the dark and light striations) + nuclei seen

Heart Disease

- <u>Congenital</u> = fault during development usually pertaining to a physical deformity (cells haven't divided properly)
 - < 20% of heart disease
 </p>
- Acquired heart disease = >80% (multifactorial disease, usually due to atherosclerosis)
- Myocardium receives insufficient blood (ischamaeic) due to coronary artery atherosclerosis (>75% of the normal luminal cross-section)
 - o Epidemiology: IHD accounts for ~30% of deaths in women aged +6- and ~33% in men
- Two manifestations or levels
 - o Gradual occlusion of the coronary artery → angina pectoris (chest pain)
 - Sudden occlusion of the coronary artery → myocardial infarction (heart attack)

Atherosclerosis

- Hard risk factors
 - Hyper-cholesterolaemia deposition of fats in the blood vessel walls i.e. ↑ LDL-C
 - HTN ->140/95; Increases risk by 5-fold; damages the endothelium and vessel from excessive pressure
 - Smoking increases risk by 70 200%
 - Diabetes mellitus increased risk by 2%
 - o Genetics influences the HDL-C:LDL-C levels + the risk of HTN/DM
 - o These are multiplicative (not additive); tend not to be altered easily and closely related to the disease
- Soft risk factors
 - Hormonal factors protection of estrogen before menopause + some influence of HDL:LDL by estrogen
 - Diet influences the blood lipid levels (Risk = high fat/cholesterol, low fibre, low fruit/vegetables)
 - Obesity/lack of exercise, stress, lifestyle factors (stereotypical/classic multi-factorial disease)
- Non-modifiable risk factors = age, gender, family history, stress, personality, increased triglycerides + HTN
- Modifiable risk factors = smoking, obesity, sedentary lifestyle, diabetes, alcohol, increased cholesterol + HTN
- Clinical manifestations
 - Intermittent ischaemic effects due to narrowing of the arterial lumen reducing tissue blood flow
 - Typical atheromatous plaque
 - Manifests as angina pectoris (chest pain), intermittent claudication (reduced blood flow to the legs causes cramping during exercise), neurological impairment and secondary hypertension (known cause)
- 3 layers of a blood vessel
 - o *Inside:* tunica intima = most hypertrophied; some channels can be made through the blockage (dissection-like) + tunica media + adventitia: *Outside*
- Lipids accumulate in the intima
 - Lipid core is between the tunica intima and the media as foams cells (macrophages with lipids within)
 - Fibrous caps of intima forms from collagen by smooth muscle cells that have migrated from the tunica intima
 - The thickening of this cap increases the size of the atheroma/ decreased luminal size
 - If the fibrotic cap is weak → burst → lipids escapes (can also be achieved with anti-fibrotics)

- Factors increasing lipid core stress = thin fibrous cap, large lipid pool, less stenotic lesions + more cholesterol
- **Factors weakening the cap** = decreased collagen synthesis, increased collagen degradation, increased macrophages and T cells to the area + decreased smooth muscle cells (make collagen)
- Chronology of atherosclerosis (develop over years)
 - Ongoing exposure to risk factors promotes growth of atheroma
 - o For majority of time the natural history is subclinical; when it is clinical it is too late → occlusion/rupture
- Partial occlusion
 - o Effector of luminal size reduction by atheroma; low grade ischaemia of the heart = pain felt
 - o During periods of increased exertion → increased tissue demand BUT not met due to restriction
 - Clinical effects of atherosclerosis = angina pectoris, left-sided sharp chest pain on exertion (lasting ~10 –
 15mins) and anaerobic metabolites building up in the heart muscle
- Complete occlusion
 - Effect of a super-posed thrombosis (usually formed elsewhere) plugging the lumen of existing atherogenic artery (decreased lumen) → complete occlusion
- Characterised by persistent chest pain, unrelated to cardiac workload, given ischaemic at rest Myocardial Infarction

• MI sequelae/consequences

- o Sudden death associated with extensive necrosis of the heart muscle due to hypoxia
- o Death within 2 days due to shock and subsequent heart failure
- Congestive HF with pulmonary oedema heart doesn't have the capacity (enough tissue left) to eject blood → mismatch of outputs → oedema + HF
- o Fibrosis + healing occurs in 6+ weeks, with damaged tissue being replaced with collagen
- o Pericarditis acute inflammation within the pericardium (friction rub with AI)
- Localisation of myocardial infarction
 - o Given the infarct region is discrete is can be localised in histology sectioning post mortem
 - In vivo can be identified on ECG as changes, due to no electrolyte movement and the radionuclide trace will show the extent
 - Sub-endocardial infarct = T-wave inversion; transmural = ST segment elevation
 - Gross pathology later in natural history when fibrosis has occurred appears pale against normal
 - Sub-endocardial (inside, not full thickness of ventral LV) and transmural infarctions are important because necrotic muscle in the endocardium can stimulate thrombosis in the LV → thromboembolism → brain or lung → stroke or PE
- Types of arterial occlusions
 - o Left anterior descending coronary artery occlusion
 - Supplies blood to the apex, anterior LV and some of the septum (interventricular = IV)
 - Anterior, apical infarction = ~50% of cases
 - Right coronary artery occlusion
 - Posterior infarction = ~30% of cases with infarct of the posterior LV and posterior septum
 - This artery supplies the LV (site of most severe infarcts given level of vascularisation)
 - Left circumflex coronary artery occlusion
 - Causes lateral infarction of the LV = ~20% of cases
 - Extent and size of infarct is highlighted on ECG trace and radionuclide perfusion imaging
- Laboratory investigations
 - o High blood lipids especially total cholesterol, LDL and HDL
 - Troponins proteins associated with the tropomyosin on actin; Immediately after infarction, able to detect cTnT (up to 7 – 10 post MI) and cTnI (up to 5 days post MI)
 - o Cardiac enzymes creatine phosphokinase (CPK), lactic dehydrogenase (LDH), Serum glutamic-oxaloacetic transaminase (SGOT), Hydroxybutyric dehydrogenase (HDH; up to 12d post MI)
 - BUT skeletal muscle damage also raises these
 - Other FBE (increased neutrophils + RBCs); CXR (for cardiomegaly), technetium pyrophosphate scan;
 radionuclide ventriculogram

Management

- Defibrillation cardioversion to cease fibrillation/arrhythmias
- o Fluid replacement via IV saline
- o Pulmonary oedema give morphine to ease breathing and vasoconstrict
- o Frusemide; O2 therapy
- o lonotopic agents increased ventricular output, e.g digoxin or dobutamine
- Acute coronary thrombolysis streptokinase to lyse the thrombus (within 3 hours of symptoms)

- Analgesia morphine or diamorphine acutely
- O Anti-arrhythmic IV beta-blockers, e.g. lignocaine
- Long term anti-thrombotic medication (aspirin or warfarin), lifestyle changes + rehabilitation
- Coronary artery stents can be made from metal or polymers (elastic and springy) to hold vessels open
 - E.g. bare-metal, heparin-coated, cypher (sirolimus), taxus (paclitaxel) or EPC binding stents

MI complications

- Rupture of the heart fatal haemopericardium or cardiac tamponade (fluid build-up between the myocardium and the pericardium)
- o Thickening of the LV (can be twice the normal thickness) hypertrophy associated with HTN
 - Infarct area has ballooned (aneurysm) and a thrombus has formed
- Extension of MI (propagating thrombus) the area may build and extend as more coronary artery branches become involved and more area becomes necrotic
 - Warfarin can be given to prevent the extension
 - But only thrombolysis will remove the thrombus
- o Thromboembolism thrombus breaks off and travels to the brain → forms an ischaemic/necrotic area
 - Stroke secondary to MI
- Arrhythmias (4 types) infarct region is not contracting normally
 - Premature ventricular complexes
 - Occur irregularly from impulses that originate in the ventricles; develop because of necrotic tissue which cannot pass on electrical impulses
 - The heart doesn't beat in synchrony due to inaccurate signalling
 - Defibrillation is needed
 - Ventricular tachycardia
 - Extremely rapid contraction rate, originating from the ventricles, with insufficient time for ventricular filling
 - Ventricular fibrillation
 - Irregular, uncoordinated, ineffective contractions of individual muscle bundles
 - Asystole
 - Complete absence of contraction
- Healing MI on H&E
 - o Adjacent to the pericardium, myocardium is normal, with areas of collagen deposition
 - A region of myocardium has undergone coagulative necrosis and replaced with scare tissue at the edge
 - Young collagen fibres (not yet dense and compact), new vascular spouts and macrophages
 - Evidence of degranulation which follows AI
 - Hemosiderin is present in the region of scarring (= granulation tissue) + congested vessels
 - Haemorrhage is evident due to destruction of blood vessels
- Gross MI from early infarction
 - Lots of congestion and haemorrhage → death
 - o Infarct regions are localised and effect a small percentage of the tissue + surrounded by normal tissue