CHM1011 - CHEMISTRY ### ATOMIC STRUCTURE ### Structure of atoms - The number of protons = atomic number (Z). - The mass number (A) = protons + neutrons - Atoms contain protons (+ve), neutrons & electrons (-ve). - The number of protons governs each element. - Electrons are ~2000 times lighter than protons! ## Light and matter - Light is a form of electromagnetic radiation and interacts with matter - Wavelength (λ) is inverse to frequency (ν) - All electronic radiation travels at the same velocity - The speed of light $c = 3.00 \times 10^8 \text{ m/s}$ - Frequency (Hz or secs) * wavelength (m) = speed of light - $v\lambda = c$ ## Quanta and the photoelectric effect - Photons have energy proportional to frequency: E = h v - $h = 6.63 \times 10^{\circ} 34 \text{ J/s}$, therefore $E = hc/\lambda$ - Quantum theory energy comes in packets and is discrete ### Wave particle duality - Light is an example of wave particle duality. - If light can have material properties, matter should exhibit wave-like properties - Moving particles have a wavelength given by $\lambda = h/p$, where p = mv. (P is momentum) - For very light things (e.g. electrons), λ is significant - But macroscopic objects λ is far too small to be detected # Schrodinger wave equation - Quantum mechanics - ψ can only be used to make statements as to the *probability* of locating the electron. $H\psi = F_{10}$ - It tells us where and what for electrons - **Probability density** describes the probability of finding an electron at a point in space ## Quantum numbers - The Rydberg and Balmer equations may be used to describe the energy difference between energy levels which are described by quantum numbers. - Quantum numbers represent the unique solutions to the Schrodinger equation | Name | Symbol | Allowed Values | Property | | |---------------------|--------|-----------------------------------|---|--| | principal | n | positive integers (1, 2, 3,) | orbital energy (size) | L=0, orbital is s L=1, orbital is p L=3, orbital is d L=4, orbital is f | | angular
momentum | l | integers from 0 to n-1 | orbital shape (l value 1, 2 and 3 correspon p , d and f orbitals, respectively.) | | | magnetic | m_l | integers from - l to 0 to + l | orbital orientation | |