Lecture 1/2 | Cell Signalling | - Temporally sensing external stimuli by cells (of external cues) | | | |-------------------|---|--|--| | How? | Receptors | | | | | Extracellular environment; Growth Factor; GPCR; ion | | | | | channels; gap junctions; steroid hormones | | | | | - Induce biochemical changes in cells | | | | Hormones or | Event 1: | | | | neurotransmitters | Ca++ inc; cAMP; phospholipid messengers | | | | | Event 2: | | | | | - Protein phosphorylation; | | | | | Leads to physiological effects | | | Glycogen metabolism | Glycogen metabolism | T | |--|--| | Why study glycogen metabolism? | 1956: Kreb and Fischer: Phosphorylase – the first protein kinase – discovered. 1962: Sutherland - cAMP as second messenger of adrenaline on glycogenolysis 1968: Walsh and Krebs - PKA discovered (phosphorylation not only for glycogen metabolism) 1972: Rodbell – Gp as transducers → adenylate cyclase (and signal transduction) | | Structure of glycogen Debranching enzyn CH OH OH OH OH OH OH OH OH OH | Polymer of glucose molecules; Linked at C1 to C4 (α-1,4-glycosidic bond) → makes LONG CHAINS of glucose polymers Linked at C1 to C6 (α-1,6- linkage) → for BRANCHING | | Enzymes cutting GLYCOGEN: | C1→ C4 (α-1,4-glycosidic bond): GLYCOGEN PHOSPHORYLASE Requires inorganic phosphate (Pi) from intracellular compartment of cell Leads to one less glucose molecule on glycogen Rate limiting enzyme; subject to regulation. Glycogen (n) + Pi → G1P + Glycogen (n-1) C1→C6 (α-1,6-): DEBRANCHING ENZYME | | | conformation (so Ser14 can interact with E501) | |---|---| | AMP bound vs G6P bound (considering NO phosphorylation) | G6P binding: S14 AWAY from interface 280s loop occluding active site near the interface – for G6P binding (as well as AMP) AMP Definitely near the interface 280s loop disordered and out of place Ser14 NEAR THE INTERFACE (so pSer14 can interact with R69 if it is phosphorylated!) | ## Another way to induce glycogenolysis through phosphorylation of phosphorylase kinase # THEREFORE to regulate phosphorylase kinase: #### Lecture 4 ## Activation-inactivation cycle of trimeric G protein | 1. β adrenergic receptor binds to | Exposes region on receptor which can bind | |---|---| | agonist | the $Glpha$ subunit |