FNCE30001 – Investments (Equity)

Lecture 1- Risk Aversion and returns

Risk, uncertainty, return

Investment: a trade-off between present and future benefits. Must compensate investor for: (1) the time the funds are committed, (2) the expected rate of inflation and (3) the uncertainty of the future payments.

Holding Period Return:

appreciation yield

$$R_{t+1} = \frac{P_{t+1} + C_{t+1}}{P_t} = \frac{P_{t+1}}{P_t} + \frac{C_{t+1}}{P_t}$$

 P_t = buying price. P_{t+1} = selling price. C_{t+1} = dividend/payment received (coupon, rent, interest).

*Note: this is never negative, 0 means all wealth is lost, 1 means no change in wealth, >1 means wealth is increased.

Net Return
$$r_{t+1} = R_{t+1} - 1$$

*Note: can be negative. -1 means all wealth is lost, 0 means no change in wealth, >0 means wealth is increased.

E.g.

Gross return = (104 + 1)/100 = 1.05. Net return = (104 + 1)/100 - 1 = 0.05.

Simple Return
$$r_{t+1} = \frac{P_{t+1}}{P_t} - 1$$

*Note: i.e. simple return = gross or net return

Log Return
$$\overline{r}_{t+1} = \ln(1 + r_{t+1}) = \ln(R_{t+1})$$

*Note: when r_{t+1} is close to 0, then the equation comes closer to ln(1) which = 0.

Multiple period returns:

Simple interest:
$$W_2 = W_0(1 + r_1 + r_2)$$
. E.g. $100(1+0.05+0.1) = 115$

*Note: W2 means wealth at end of period 2, W0 means wealth at end period 0.

Compound interest: $W_2 = W_0(1 + r_1)(1 + r_2)$. E.g. 100(1+0.05)(1+0.1) = 115.50

Real and nominal returns:

Use real numbers with real returns and nominal numbers with nominal returns (DON'T MIX UP!)

$$r_{t+1}^{real} = r_{t+1}^{nominal} - i_{(t+1)}$$

E.g. 1 year ago, deposited \$1000 in bank 10% return. If i = 0.06, then real return = 10% - 6% = 4%

The higher the expected inflation, the higher the required return on a risky asset.

Comparing returns across periods:

Use the EAR (effective annual rate) = $(1 + r_{t,t+n})^{\frac{1}{n}} - 1$. *Note: n is the period the investment is held for (in years), $r_{t,t+n}$ = net return.

Sometimes we want to know how well our investment performed on 'average'...so we use:

Arithmetic mean return: this is not an appropriate method for calculating an average because they are not independent. i.e. if you lose 100% of your capital in one year, you don't have any hope of making a return on it during the next year so they require a geometric average to represent their mean.

$$\mu_a = \frac{1}{n} \sum_{i=1}^n r_{t+i} = \frac{1}{n} \left(r_{t+1} + r_{t+2} + \dots + r_{t+n-1} + r_{t+n} \right)$$

Geometric mean return: the annual rate that will compound to the observed terminal value of a portfolio.

$$\mu_g = (\prod_{t=1}^{n} (1 + r_{t+i})) - 1 = ((1 + r_{t+1}) \times ... \times (1 + r_{t+n-1})(1 + r_{t+n}))^{\frac{1}{n}} - 1$$

E.g.
$$P_2 = P_0(1+0.05) = P_0(1+\mu_g)^2 \div (1+\mu_g)^2 = P_2/P_0 = R_{t,t+n} \div \mu_g = (R_{t,t+n})^{1/2} - 1$$

Expected return:

$$E(r) = \sum_{s=1}^{n} (Probability \ of \ Scenario) \times (Possible \ Return) = \sum_{s=1}^{n} p_s \times r_s$$

BUT: because we can't observe the population we must rely on a sample of returns.

Sample mean: $E(r) = \frac{1}{n} \sum_{i=1}^{N} r_i = \bar{\mu}$. This provides an estimate of the E(r).

So...
$$E(r) = \sum_{s=1}^{n} p_s \times r_s = \frac{1}{n} \sum_{i=1}^{N} r_i = \bar{\mu}$$

Variance:

$$Var(r) = \sum_{s=1}^{n} p_s \times (r_s - E(r))^2 = E[(r_s - E(r))^2]$$

*Note: the standard deviation $Stdev(r) = \sqrt{Var(r)}$ measures how well the return of an asset compensates the investor for the risk taken.

Sample variance:

Sample variance is biased downward because we have taken deviations from the sample average μ instead of the unknown, true expected value E(r), and so have introduced a bit of estimation error. We can eliminate the bias by multiplying the sample variance by $\frac{n}{n-1}$.

$$\therefore V(r) = \frac{n}{n-1} \times \frac{1}{n} \sum_{i=1}^{N} (r_i - \bar{\mu})^2 = \frac{1}{n-1} \sum_{i=1}^{N} (r_i - \bar{\mu})^2$$

Sharpe ratio:

$$S = \frac{E(r) - r_f}{\sigma_r}$$

The ratio measures the excess return (or risk premium) per unit of deviation in an investment asset.

*Note: we want the outcome which maximises the Sharpe ratio (steepest gradient on line).

Defining return

• r1 is the return from t = 0 to t = 1, given by:

$$\circ \quad r_1 = \frac{P1 + D1 - P0}{p0} = \frac{P1 + D1}{P0} - 1$$

- The return is the ex-dividend price (P1) plus any dividend (D) received at t = 1, in excess of the price paid (P0), as a fraction of the price paid.
- When the time frame is clear, we may omit the subscript, so return is just r.
- A return may be:
 - The unknown future return \tilde{r} :
 - \circ The return that's "expected": $E(\tilde{r})$
 - The realised return: r
- The tilde () indicates a random variable; i.e one that has a probability distribution.
- · Returns are uncertain because there are many things we don't know
- We usually start by tying investments to the economy:
 - What can happen to the economy in the future (each outcome or "state" s)?
 - \circ What return will Qantas get in each outcome $\tilde{r}(s)$
 - O How likely is that outcome p(s)?
- Outcomes must be mutually exclusive and exhaustive.
- Probabilities must sum to 1

Expected return

• $E(\tilde{r}) = \sum_{s} p(s)\tilde{r}(s)$

Standard deviation of returns

- The standard deviation of the return distribution is a measure of the uncertainty of returns.
- Also called the "volatility" of returns.
- The variance (SD²) of returns is:

$$\circ \quad \sigma^2(\tilde{r}) = \sum_{s} p(s) [\tilde{r}(s) - E(\tilde{r})]^2 = E\left[\left(\tilde{r} - E(\tilde{r}) \right)^2 \right]$$

- Therefore, SD:
 - $\circ \quad \sigma(\tilde{r}) = \sqrt{\sum_{s} p(s) [\tilde{r}(s) E(\tilde{r})]^2}$

Modelling Returns

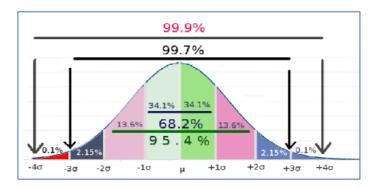
- What distribution might make a good model for \tilde{r}
- The Normal, with mean μ and volatility σ has these benefits:

o Tractable:

- Symmetric
- Only two parameters needed, so σ is an appropriate measure of risk.

Stable:

- If asset returns are normally distributed then portfolio returns will also be normally distributed.
- o Empirically, a reasonable first approximation
- Computing confidence intervals and significance tests is easy:



- Often, it is useful to scale returns so they match the standard normal, with mean 0 and standard deviation 1: that is, N(0,1)
- Suppose $\tilde{r}_t \sim N(\mu, \sigma)$ *Then*:
 - \circ We can transform it into a standard normal random variable $ilde{Z}$

$$\circ \quad \tilde{Z} = \frac{\tilde{r}_t - \mu}{\sigma}$$

• We can then compute probabilities using (eg) a standard normal table

Suppose you want
$$\Pr(\tilde{r}_{i} \leq 0)$$
.

Then $\Pr(\tilde{r}_{i} \leq 0) = \Pr\left(\frac{\tilde{r}_{i} - \mu}{\sigma} \leq \frac{0 - \mu}{\sigma}\right)$

$$= \Pr\left(\tilde{z} \leq \frac{0 - \mu}{\sigma}\right)$$

where $\frac{0 - \mu}{\sigma}$ is the "critical value".

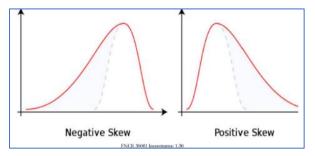
- Returns however, are not in fact normally distributed, especially over short time periods like a day or a week.
- A t-distribution with 5 df tends to be the closest approximation

Skewness

- The normal distribution is symmetric. (equal to 0)
 - o But many other distributions are not.
 - They may be "skewed".

• Skewness is defined as:

$$\circ Skew = \frac{E(\tilde{r}-\mu)^3}{\sigma^3}$$



• If returns are negatively skewed (ie to the left) then

o downside risk is underestimated by the standard deviation.

• If returns are positively skewed (ie to the right) then

o downside risk is overestimated by the standard deviation.

Kurtosis

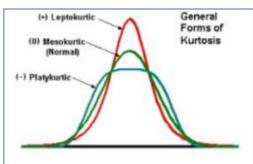
• Kurtosis indicates how "fat" the tails are.

• Excess kurtosis is defined as:

$$\circ \quad Kurtosis = \frac{E(\tilde{r}-\mu)^4}{\sigma^4} - 3$$

• Note: the kurtosis of the normal distribution is 3.

• Unfortunately, some people use the term "kurtosis" when they really mean "excess kurtosis".



• <u>"Platykurtic"</u>

Negative excess kurtosis

o Tails have less data (ie are "thinner") than the normal.

"Leptokurtic"

Positive excess kurtosis

o Tails have more data (ie are "fatter") than the normal.

Conclusions

1. Since the 1950s, average skewness has been tiny

• And has been unstable from decade to decade.

- 2. But average excess kurtosis has been positive (about 0.4).
 - And reasonably stable from decade to decade
 - ie there have been "fat tails".

Portfolio Theory

- "Portfolio": Any collection of investments (assets).
- "Modern Portfolio Theory" was invented by Harry Markowitz (born 1927) in the 1950s.
 - o It won him the Nobel Prize in Economics in 1990.
- Before that time, most investors intuitively understood its message.
 - o But Markowitz gave it a rigorous foundation.
 - o And made its implementation more efficient.
- Portfolio theory is a foundation for both the theory and practice of Finance.
- While there have been numerous refinements to portfolio theory in the past 60 years, the basics are still very like those laid down by Markowitz himself.

2 ways to control the risk of a portfolio

- Shift funds between risky assets and the risk-free asset:
 - o capital allocation
- Shift funds between risky assets:
 - o efficient diversification
- Both problems have two elements:
 - o The risk-return combinations available:
 - "objective" element
 - The risk-return preferences of the investor:
 - "subjective" element

Capital Allocation

- about splitting funds between safe and risky assets
 - o Safe: eg a Treasury note or a government guaranteed bank deposit
 - o Risky: eg a share or a portfolio of shares
- "Investment opportunity set":
 - o The risk-return combinations available to the investor
- Investor puts proportion y of his/her wealth in the risky portfolio and the remaining 1 y in the risk-free asset.
- This creates the complete (or, combined) portfolio C.
- Note:
 - o proportion $y = \frac{\sigma_C}{\sigma_p} = \frac{risk \ of \ combined \ portfolio}{risk \ of \ risk y \ asset \ portfolio}$
- The capital allocation line (CAL) is the graph of the investment opportunity set.
 - o ie the set of feasible pairs of expected return and standard deviation
- Its equation is:
 - $\circ \quad E(\tilde{r}_c) = r_f + \frac{E(\tilde{r}_p) r_f}{\sigma_p} \sigma_c$
 - \circ Intercept: r_f