# **MATERIAL SYSTEMS: TIMBER**

# WOOD AND TIMBER

| Truewood (heartwood)       | Sapwood                                          |
|----------------------------|--------------------------------------------------|
| Inner part of the log      | Outer part of the log                            |
| Composed of inactive cells | Composed of active cells                         |
| Good for timber            | Moist so not suitable for conversation of timber |

- They are separated during conversation or seasoning process

# WOOD

- Due to the hollow cellular microscopic structure of wood, timber is light weight

# TIMBER RESOURCES IN AUSTRALIA

Timber in Australia comes from:

| Managed native forests                                                                        | Plantations             |
|-----------------------------------------------------------------------------------------------|-------------------------|
| Hardwoods                                                                                     | Hardwoods and softwoods |
| 60 - 100 years                                                                                | 30 - 50 years           |
| 90% not suitable for harvest<br>10% suitable for harvest<br>1% harvested annually and regrown |                         |

# SOFTWOOD AND HARDWOOD

Timber products are divided into 2 broad families:

- Softwoods (coniferous)
- Hardwoods (broad-leaved)

A more appropriate distinction between softwoods and hardwoods is one that classifies them in relation to their cellular structure

# PROCCESS - FROM HARVEST TO MILLING

- 1. Growth
- 2. Assessment
- 3. Harvest
- 4. Trimming
- 5. Transport
- 6. Milling



The sawing of logs into boards at the mill. 2 main types are:

| Back-sawn                              | Quarter-sawn                                                                                     |  |
|----------------------------------------|--------------------------------------------------------------------------------------------------|--|
| Higher recovery from the log           | Many decorative timbers reveal their rich figure with interlocking grains only by quarter sawing |  |
| Faster and cheaper to produce          | More expensive but more reliable for structural performance                                      |  |
| Easy to separate knots, less shrinkage | Dries slower but less prone to defects e.g. cupping                                              |  |





# **MATERIAL SYSTEMS: CONCRETE**

#### **OPUS CAEMENTICIUM**

- Concrete in a conglomerate, a mixture of elements that cannot be found in nature.
- The Romans developed a building technique called "opus caementicium" where stone rubbles were alternated with dense mortar and confined within courses of bricks acting as formwork
- The Romans perfected their knowledge on mortar and concrete also by developing Pozzolana, a cement obtained combining volcanic rocks with lime and sand which has the property to harden under water

#### HYDRAULIC LIME

- The term identifies different types of lime mortar, which set through hydration

#### **CEMENT & CONCRETE**

- Obtained through the admixture of sand aggregates (coarse and fine), water and cement (the bonding agent)







Cement

Wate

#### **CEMENT**

- Cement used in the construction industry delivers from Aspdin's Portland Cement and it is usually referred as Ordinary Portland Cement (OPC)
- OPC is a complex energy intensive industrial product obtained by burning limestone slurry and subsequently combining it with silica, iron and alumina
- OPC is an hydraulic type of cement. It reacts chemically with water by hardening and it provides a durable and chemically stable bond with the aggregates

# **CEMENT PRODUCTION PROCESS**

- Cement is obtained form limestone and clay
- These materials are crushed and blended ('kiln feed'), then heated in a kiln ('klinker')
- Limestone/clay --> blending --> kiln --> klinker --> cement mill --> cement

# SUPPLEMENTARY CEMENTITIOUS MATERIALS

- Ordinary cement can be enriched by adding supplementary materials, creating cement 'blends'
- Materials are added in quantities not exceeding 10%, to improve workability without affecting strength



FLY ASH Material extracted from the flue gases of a boiler fired with pulverised coal



SLAG
Slag is a granulated material consisting of silicates and calcium aluminosilicate, a by product of steel making in a blast furnace



AMORPHOUS SILICA A very fine pozzolanic material composed mostly of non christalline silica

# **MATERIAL SYSTEMS: STEEL**

#### STEEL MANUFACTURING

#### Iron alloys:

- Wrought iron (purest form of iron 0.02%)
- Cast iron (1.8 4%)
- Steel (0.4 1.7%)
- Stainless steel

### **Carbon content**

- Critical to determine the properties of iron carbon alloys
- Too much carbon makes the alloy hard but very brittle
- Too little carbon makes the alloy soft and weak
- Steel is an alloy with an optimum carbon content between 0.04% and 1.8%
- The carbon content of steel is adjusted depending on the applications required

# Wrought Iron (0.02% carbon content)

- The purest form of iron used for construction
- Contains a very low level of carbon (0.02%)
- Ductile and high strength
- Admirable working properties make it a viable option for ornamental ironwork
- Limitations: too costly and cannot be welded

#### **Cast Iron** (1.8 - 4% carbon content)

- Good fluidity making it ideal for casting of complex industry parts
- Reasonably strong but brittle
- Low melting point makes it almost impossible to weld

# **Metal properties**

- Deform greatly before breaking and after their elastic phase they enter into a prolonged plastic flow before breaking. e.g. ruler bends and goes back to original form until it reaches a point where it fractures
- In other words they are a lot more ductile.

# Mild steel (0.1 - 0.7% carbon content)

- For large scale structural applications iron alloys are preferred when they have these properties:
  - Weldability (less than 0.5 carbon content)
  - Ductility (at service temperature)
  - Low cost (to strength ratio)
  - Availability (in sections and plates)

# Steel advantages and disadvantages:

| Advantages                                        | Disadvantages                                                                                    |
|---------------------------------------------------|--------------------------------------------------------------------------------------------------|
| High strength (in tention, compression and shear) | Doesn't provide the dual function of structure + envelope of other materials (masonry, concrete) |
| Excellent strength to weight ratio                |                                                                                                  |
| High stiffness (less prone to deflect)            | Prone to corrosion (must be protected)                                                           |
| Relatively easy to connect                        | Fire threat                                                                                      |

# **MATERIAL SYSTEMS: MASONRY**

# SMALL STONES (DRY CONSTRUCTION)

- Local small granite stones are simply stacked
- Larger stones form the base of the wall, stones progressively get smaller
- Stones are bound to one another only in virtue of their weight (no mortar)
- This system works well in compression but suffers to take tensional stress
- Very difficult to form a roof

# STEREOTOMY (DRY CONSTRUCTION)

- Stones are cut to size (slightly tapered)
- Columns slightly tapered to reduce self weight
- Kept together by friction and self weight
- Allows for the build of the structural principles such as the arch, vault and dome (three-dimensional masonry)
- Allows for more complex construction methods to develop



#### **CLAY MASONARY**

- Bricks combine the advantages of small stone stacking systems with the precision and spanning capacity of large stone masonry
- Bricks are small enough to be held on one hand
- Bricks and stone work well together

#### STRUCTURAL CONFIGURATIONS

- Masonry with small modular elements 'liberates' architects and builders from the 'cage'
- Meaning, structural walls can be separated from non-structural infills
- Structural configurations include:



#### **CENTERING**

- The temporary structure which the stones of an arch / vault are laid during construction.
- Until the keystone is inserted, an arch has no strength and needs the centring to keep everything in place

#### **NUBIAN VAULTS**

- These vaults are built without centring due to:
  - Stickiness of mud mortar
  - Shape of the vault
  - Inclination of the courses that are placed one upon the other
  - Supporting wall which is thicker than the lateral walls







# CONSTRUCTION MACHINES AND DESIGN AUTOMATION

#### WHAT IS A MACHINE?

- Any device that helps you to do work
- We use machines to:
  - Transform energy
  - Transfer and/or increase the magnitude of a force (hammer)
  - Change the direction of a force (halyard, crane)
  - Increase the speed or distance of a force (bicycle)

#### SIMPLE MACHINE

- Use 'mechanical advantage' to multiply force
- The simplest form of using one thing to accomplish something faster or better
- There are six simple machines:
  - Lever
  - Inclined plane
  - Block and tackle
  - Wheel and axle
  - Screw
  - Gear
- In physics there are only 2 recognised principles (other 4 refer to these 2 principles):
  - Lever
  - Inclines plane

# COMPLEX MACHINES (COMPOUND MACHINES)

- Combination of 2 or more simple machines
- High maintenance and expensive to repair

#### SIMPLE VS. COMPLEX MACHINES

- Simple machines often save:
  - Money
  - Time
  - Frustration

# SIX SIMPLE MACHINES AND THEIR APPLICATIONS

#### The Lever

- A rigid bar resting on a pivot
- Used to move a heavy load at one end when pressure is applied to the other
- Three aspects:
  - Resistance
  - Fulcrum
  - Effort



MA = resistance / effort

\* The mechanical advantage is given by the number of parts of the rope that act on the load

# SITE ANALYSIS (Guest Lecturer: Blair Gardiner)

#### WHAT IS A SITE ANALYSIS?

The detailed study or examination of an area proposed for or influenced by construction development in order to understand more about it and generate a response to the outcomes of such study and investigations

#### WHY UNDERTAKE A SITE ANALYSIS?

- Prepared in advance of design & in advance of construction (tendering)
- Purpose: to record & evaluate information on the site & surroundings & how this evaluation may impact on the design & construction of the building
- Site analysis procedure part of any design response. It is also critical in implementing the construction process & methodology
- Provides client with information on development feasibility factors
- Assists in locating building
- Opportunity factors from advantages of site (site features/environmental benefits)
- Identifies potential problems (short & long-term)
- Structure needs to be designed to account for site factors (e.g. footing system, building articulation)
- Servicing & infrastructure capacity for building needs to be determined
- Constructability factors need to be accounted for (manner of construction & management of construction)
- Safety factors arising from site need to be considered
- Influence of neighbouring facilities on site & new building need to be factored
- Amenity of adjacent structures & facility operation of adjacencies need to be considered

# Design response cannot commence without consideration on how to construct the building and how to respond to difficult and very particular site conditions

- What materials do you use If no room, can only work from one site so need to be easy to handle
- How do you minimise construction time access issues, noise, amenity
- Systems need to provide fire rating for construction on boundary should building be prefabricated but how to you get prefabricated elements up, no room for crane?

# DESIGN SITE ANALYSIS (not a construction design site analysis)

- Planning policy Land use considerations
- Heritage
- Density
- Urban context neighbourhood character
- Streetscape
- Environmental overlays
- Amenity considerations access to light, overshadowing....
- Site layout & landscaping
- Energy efficiency
- Building envelope
- Visual & acoustic privacy
- Car parking & vehicle access
- Private & communal open space (residential)
- Site facilities (mail, rubbish)
- Site entry points

# **ENVIRONMENTAL PERFORMANCES (Guest Lecturer: André Stephan)**

#### **ENVIRONMENTAL ASSESSMENT**

A process of evaluating and establishing the significant short and long term effect of the building on the surrounding environment. It provides an opportunity to minimise and eliminate these effects.

#### **CONCEPTS**

- Stocks and flows
- Final (how much energy we need to heat/cool/light), delivered (amount of energy before loss), primary energy (initial amount of energy produced)
- Active energy (solar panels), passive energy (sun)
- Greenhouse gas emissions (CO2)

# **Primary energy**

The amount of energy produced at the source to deliver the final energy stage eg. at the coal fired plant in Gippsland to deliver to a house in Melbourne

# **Delivered energy**

The amount of energy actually delivered eg. energy delivered to the building, measured on the meter

# Final energy

The amount of energy used at the operation / target eg. how much energy is required in lights to actually provide for the site at working level

# LIFE CYCLE ANALYSIS

Examines the total environmental impact of a material or product through every step of its life. From raw materials, to manufacture/transport, to construction, to using it / maintaining it to the disposal and recycling.

#### **EMBODIED ENERGY**

Embodied energy is the sum of all energy inputs, across the entire supply chain, supporting the production and delivery of a product or service.



# **OPERATIONAL ENERGY**

Amount of energy required to run the building over its entire lifetime (depends on occupants)

# FINDING STRUCTURAL FORMS

#### WHAT IS A SHELL

- A structure defined by a curved surface
- It is thin in the direction perpendicular to the surface
- Might be curved in 2 directions (dome, cooling tower) or it may be cylindrical and curve in 1 direction
- Work in tension and compression or only compression

#### MEMBRANE ACTION

- All the forces are mainly transferred along the surface (there is no bending moment)
- In the case of gridshells, the mechanical behaviour is preserved through a clear grid of beams that highly reduce the amount of material implied for construction
- Nothing is lacking and nothing is superfluous

#### FORM FINDING

- Identifies the process of designing optimal structural shapes by using experimental tools and strategies (physical models) to simulate a specific (expected) mechanical behaviour
- Reverse hanging method is the oldest and probably most diffused form-finding technique for arches and shells
- A physical model, made with elastic cables or membranes with no rotational stiffness, is first subject to gravitational forces to obtain a structural state of pure tension. Such a form is then inverted to identify the mechanical compression-only situation





St Louis Arch, Missouri - Eero Saarinen

# Strings (reverse hanging method)



# Sagrada Familia, Barcelona



# **WATERPROOFING (Guest Lecturer: Giorgio Marfella)**

#### WATERPROOFING PRINCIPLES

# Water penetration: 3 necessary conditions

- 1. Water must be present on the external surface
- 2. Must be an opening to permit to passage of water
- 3. Must be a force to drive the water through the opening

ALL 3 MUST BE PRESENT

# Waterproofing: 3 basic strategies

- 1. Water is diverted and discharged form the surface of the building
- 2. The gaps/openings where water can enter are closed
- 3. Forces that can push the water inside the building envelope are neutralised

#### 2 statistics to remember

- 90% of water leaks occur within 1% of the total building envelope area
- Only 1% of water leaks are caused by a system or material failures

# WATERPROOFING METHODS: DIVERSION

# 5 diversion strategies:

- Wash
- Slope to Drain
- Overhang / drip
- Overlap
- Weep

#### Wash

- Takes water out
- Parapet flashings (angled for water)



# Wash: compatibility of metals

- Make sure metal materials are compatible when transferring water
- Copper will make other materials rust if contact is made (with water)
- Aluminium is a good material (compatible with most materials) but not concrete or mind steel (separation barrier)