Contraction

- · movement of specialised intracellular structures cause shortening of muscle cells
- groups of cells work together to produce force & movement
- muscle cells arranged in parallel so contract. produces force in single direction

3 types of muscle

· classified based on appearance & contractile cells made of

- · under light microscope
- skeletal muscle cells running longitudinal

Muscle cell terminology

- sarcolemma = plasma membrane
- sarcoplasm = cytoplasm
- sarcoplasmic reticulum (SR) = specialised sER

Skeletal muscle

- usually attached to bone effective movement of skeleton
- voluntary control
- skeletal muscle within other organs e.g. oesophagus, diaphragm
- made up of "fascicles" held together by connective tissue
 - at end of muscle, connective tissue continues as a tendon & attaches to bone
 - fascicles bundles of striated muscle fibres/ cells
- multinucleate syncytium
 - fusion of indi. muscle cells during development to make large, single cell with multiple nuclei
- muscle fibres entirely composed of myofibrils in continuous network
 - · nuclei sit at periphery
- · myofibrils extend entire length of skeletal muscle
 - made up of myofilaments
 - actual contractile elements of skeletal muscle = actin & myosin
 - arranged into highly specialised structures sarcomeres allowing contraction

"muscle made of *fascicles* surrounded by connective tissue - fascicles made up of multiple muscle cells surrounded by connective tissue & muscle cells filed up with *myofibrils* which are made of *myofilaments*"

Why is muscle striated?

- striations caused by highly organised arrangement of myofilaments (within myofibrils) into sarcomeres
- sarcomeres in adjacent myofibrils are aligned with each other, allowing for striated pattern = straight line across whole cell
- A (dark) & I (light) bands sarcomeres are primary cause of striations
- sarcomeres joined end-end = myofibril

Sarcomeres

- functional unit of muscle
- arrangement of molecules in sarcomere allows for muscle contraction
- 2 main components:
 - thin filaments = actin
 - thick = myosin = myofilaments
- every sarcomere shortens during muscle contraction but actin & myosin remain same length

organisation of sarcomere

- A band: region of myosin filaments, don't change during contraction (dark)
- i band: region between 2 sarcomeres containing actin only. Incorporates Z lines (which shorten during contract) therefore also shortens during muscle contract (light)
- Z line: band where actin attach to each other point of connection of adjacent sarcomeres
- M line: myosin filaments attach to each other in centre of sarcomere
- H band: region containing myosin filaments online shorted during contraction

Muscle contraction

- · during contract, the thin filaments slide over thick filaments & move towards M line
- brings Z lines closer together, causing shortening of sarcomere (therefore myofibril)
- I band & H band become shorter during contraction

Sarcoplasmic reticulum

- within muscle fibres myofibrils surrounded by highly developed see called SR
- · SR highlight organised tubular network around myofibrils
- · Ca stored in SR
- myofibrils surrounded by mitochondria & glycogen deposits
- 2 transverse tubules (T-tubules) penetrate inside of muscle cell causing contraction through all muscle
 - T tubules run along A-I band junc.
 - SR forms tubules that run adjacent to T-tube called terminal cisternae

each T-tubule associated with 2 terminals cisternae = triad

Initiation of contraction

- contraction of sarcomere caused by Ca ions
- release of Ca from SR triggered by nerves = muscle contract
- motor neurons meet muscle at neuromuscular junction
- action potentials pass from nerve into sarcolemma
- action potential passes along sarcolemma & into ttubules
 - depolarises T-tubules triggering Ca release from SR = muscle contract

Cardiac muscle

- contractile component of heart
- called "myocardium"
- involuntary straited muscle
- cardiac muscle cells = cardiomyocytes
- cardiac muscle fibres = myocardial fibres

Cardiac muscle fibres

- made up of collections of branching fibres in network
- cardiac muscle ells join together to make these fibres

Cardiac muscle cells

- not multinucleate syncytium made of indi. cells joined end-to-end
- contain same type of myofilaments
- arranged in sarcomeres = striations
- Nuclei of CM cells located in <u>centre</u> of cell indi. myofibrils must seperate to pass around
- CM cells may attach to 2+ neighbouring cells through intercalated disks = branching fibres
- · is a functional syncytium
 - · because fibre structure allows rapid coordinated contraction along ints entire length

· achieved through intercalated disks

intercalated disks

- disks represent highlight specialised junctions attaching CM cells together (between all CM cells)
- 3 components

· Fascia adherens

 cause of dense staining, physically attaches cells at ends to form fibre, functionally similar to adherent junction in epithelia

Macula adherens

 desmosomes, physical attachment, reinforce fascia adherent, prevent cells from pulling apart, found bit ends & sides of CM cells

Gap junctions

 provide ion continuity between cells allowing coordinated contraction = functional syncytium

Supporting structures

- inside next to each myofibril are numerous <u>large</u> <u>mito</u> & glycogen stores for energy = reliability (e.g. heart)
- mitochondria use glycogen sores to produce ATP via oxidative phosphorylation = efficient
- sk M = 1-2% mito, CM = 35% mito

Sarcoplasmic reticulum

- · not as highly organised as in skeletal
- SR forms relatively sparse network in CM
- SR does not form tubule-shaped terminal cisternae
 - small endfoot-type terminal cisternae = diad
 - 1 tubule per sarcomere but MUCH larger
- T-tubule at teach Z-line

Contraction

Caused by Ca = Ca release from tubes causing Ca releasing from SR

- contraction of sarcomeres = myofilaments sliding
- contraction initiated spontaneously
- specialised pacemaker cells create & control heartbeat
- signals pass from cell-cell through gap junctions on intercalated disk = coordinated contraction

Smooth Muscle

- not straited
- involuntary contraction
- made of bundles/sheets of smooth muscle cells (SMCs)
- •found in walls of organs (e.g. stomach, intestine, uterus and walls blood vessels)

Smooth muscle cells

- fusiform-shaped differ in size depending on location
- connected together by gap junctions allowing coordinated contraction
- central elongated nuclei
- no sarcomeres = no striations
- majority of cytoplasm filled with thin filaments (actin)
- myosin filaments scattered throughout cytoplasm
- contraction of SMCs causes shortening of cell

Smooth muscle contraction

- caused by range of stimuli (involuntary)
 - mechanical (stretching)
 - electoral (autonomic nervous system)
 - chemical (hormones)
- contraction caused by Ca
- no T-tubules but still have SR

(b) Contracted smooth muscle cell

- smooth muscle specialised for slow, prolonged contraction
 - · can contract without fatigue
- can contract in wave-fashion = peristaltic movements within organs
 - · narrowing/shortening of objects through lumen of organs
- can contract whole smooth muscle at once to produce extrusive movements e.g. urinary bladder & uterus = closing of lumen = urination