PHYS30008 Course Summary Notes

Table of Contents:

Lecture block 1 (L7-9) – Neuro (Optogenetics and Chemogenetics)	Page 2
Lecture block 2 (L10-12) — Cardio (DOHaD)	Page 4
Lecture block 3 (L13-15) — Muscle (Disease Therapies 1)	Page 8
Lecture block 4 (L16-18) — Neuro (ENS)	Page 11
Lecture block 5 (L19-21) – Cardio (Genetics)	Page 14
Lecture block 6 (L22-24) – Muscle (Disease Therapies 2)	Page 17
Lecture block 7 (L25-27) – Neuro (Neuromodulatory System)	Page 22
Lecture block 8 (L28-30) – Cardio (Heart failure)	Page 27
Lecture block 9 (L31-33) – Muscle (Muscle Metabolism)	Page 31

Lecture block 1 (L7-9) - Neuro

Viruses

- Two main classes (based on their genetic material):
 - o RNA viruses undergo reverse transcription (in host cell cytoplasm)
 - o DNA viruses replicate in host cell nucleus
- Generally species- (or even cell-) specific— "tropisms" (multiple species) are quite rare
 - o Enables specific tissue targeting of therapeutic viruses
 - Can track cells effected using Green Fluorescent Protein
- Types:
 - Lentivirus RNA virus, responsible for HIV
 - GAG encodes proteins which assemble HIV
 - Pol makes reverse transcriptase, and integrase (which catalyses insertion of pro-viral DNA into the host genome)
 - Env encodes proteins that make surface glycoproteins (cell entry with gp120 and CD4 cells)
 - Rev encodes RNA binding protein that exports viral RNA form nucleus
 - Tat encodes viral transactivator that binds in the LTS to regulate viral transcription
 - Adenovirus dsDNA (e.g. common cold)
 - Adeno-associated virus requires adenovirus to replicate (cannot by itself)
 - ssRNA or ssDNA
 - E.g. pavovirus (deadly to dogs)
- Uses in treatment
 - Use "inactivated virus" to enter cell and produce proteins
 - Genes that code for pathogenic proteins and are removed (e.g. genes that enable replication)
 - Replace with genes for wanted proteins
 - Produced a synthetic promoter (8x stronger) called 'PRS X8 promoter' (successfully produced more NA cells)

Optogenetics

- Channelrhodopsins (GPCR) in the eyes
 - Responsive to/activated by specific wavelength of light (470 = blue light (can be red-shifted however))
 - Relatively slow (as GPCR)
- Halorhodopsins
 - o CI pump channels (pump in in response to photon of yellow light)
 - One photon = one ion (not a flood like channelrhodopsins)
 - Hyper-polarisation = inhibition
- Archaerhodopsins and bacteriorhodopsins (fungi)
 - o Ion channel relatively fast
 - Proton pump one photon releases one H⁺ ion (hyper-polarisation = inhibition)
 - One photon = one ion (not a flood like channelrhodopsins)

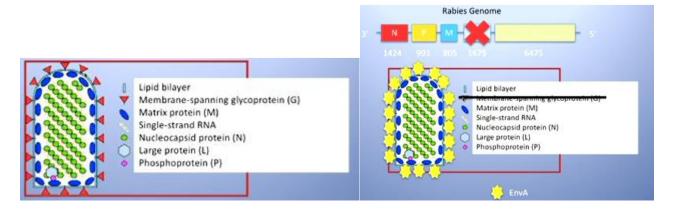
Nucleus accumbens (nAc)

- Key for reward and motivation
- Different responses to stimuli in depressed and healthy mice (as a model of people)
 - Measured by "paired pulse ratio" (PPR) how much transmitter is released in first pulse (higher in susceptible mice)
 - First pulse affected by: pre-synaptic Ca²⁺ store, neurotransmitter level, pot-synaptic receptor number and conductance)

- Second pulse (immediately after) Ca²⁺ level increases in resilient mice (hasn't dropped after first pulse), but not in susceptible mice (takes longer to reload vesicles)
- Can also test by injecting channelrhodopsins (via virus) into pre-frontal cortex (PFC)
 - Enables specific activation of PFC (measured via patch clamp post-surgical removal)
- Results: showed "resilient" mice have:
 - Extra glutamate released from PFC
 - o Less glutamate released from ventral hippocampus

Chemogenetics

- Modulates activity via ligand-gated ion channels and GPCR in which either:
 - o The ligand doesn't exist in mammals
 - The binding site is modified to not bind the native ligand and bind an otherwise inactivated ligand:
 DREADDs (Designer Receptors Exclusively Activated by Designer Drugs)
 - Generally slower response/effect than optogenetics
 - o Eg: CNO inert ligand, but can be used to activate modified human muscarinic receptors (hM₃D) that no longer responds to ACh (until 10,000x higher ACh level, which is unrealistic of biological conditions)
 - Can do this for excitatory or inhibitory receptors
- Able to track changes in response via inserting GFPs (or other markers) along with the new receptors in the viral vectors


Neurological Control of Respiration

Traube-Herring Waves – bursts of sympathetic activity after each breath that slightly constricts blood vessels

- Exaggerated in hypertensive people
 - o If "normotensive" but have exaggerated Traube-Herring Wave could indicate future hypertension
 - Lesions in C1 neurons (found in rostral-ventral lateral medulla) prevents this future hypertension
- NK-1 receptor receives substance P, responsible for generating breathing ability and has connection with sympathetic modulatory activity of breathing with C1 neurons and hypertension (blood pressure)

Neurotropic Viruses – taken up by terminals, replicated (amplified) in nucleus, projected to next neuron, etc

- Often "lytic" kills the neuron
- E.g. 'Pseudo-rabies virus' (EnvA-SADB19-delta G-rabies)
 - Has 'G-protein' removed (so prevents it moving between neurons)
 - Produces EnvA instead (no mammalian receptors for it (only in birds), so cannot infect cells)
 - Alter C1 neurons to enable EnvA-receptor (TVA) production DNA required transmitted to C1neurons by AAV
 - Also make this transmit a GFP receptor to track uptake
 - Now inside, virus can reform with G-protein on outside
 - Now able to be transmitted neurotropically from this "seed neuron" to infect other cells
 - This is the "modified rabies" that gives immunity

