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Chapter 1A: Review of Simple Linear Regression (SLR) 
(1) LR Model 

• Error term (e): the variation in the dependent variable due to other 
variables that are not accounted in the model 

• Assumptions: 
o 𝐸(𝑒) = 0 
o 𝑒 and independent variables are uncorrelated 
o 𝑒 ~ 𝑁(0, 𝜎2) 

• 𝑌 = 𝛽0 + 𝛽1𝑥1 + 𝑒   with 𝑒 ~ 𝑁(0, 𝜎2). By assumption, 𝑌 has a mean of 
𝛽0 + 𝛽1𝑥1 and is normally distributed with a standard deviation (SD) of 𝜎 

• The 95% prediction interval (PI) is: (𝛽̂0 + 𝛽̂1𝑥1) ± 1.96 𝜎⏟
𝑅𝑀𝑆𝐸

 

 

(2) Error SD 

𝜎 = 𝜎𝑌√(1 − 𝑟𝑋,𝑌
2 ) 

𝜎 : error SD of the errors 
𝜎𝑌 : SD of Y 
𝑟𝑥𝑦
2  : correlation of X and Y 

• To use this formula, the homoscedasticity assumption needs to hold 

• 𝜎̂ = RMSE on Stata 
 
(3) Residuals 

• Residuals are estimated values of the errors  

• We can evaluate the residuals, but we do not observe the errors 

𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 = 𝑒̂ = 𝑌 − 𝑌̂ 

o Fitted value is the composite term:  𝑌̂ = 𝛽̂0 + 𝛽̂1𝑥1 estimate of the 
regression line for a given value of 𝑥1 (part of the observation that is 
explained by the independent variables) 

o Error is the random part that is not explained 
 
(4) Standardised residuals 

• If the regression model assumptions are correct  𝑒 ~ 𝑁(0, 𝜎2). Thus 
𝑒

𝜎
 

will have a standard normal distribution and should lie between ± 2.6 

• 𝑒 is unknown  use the estimates of the errors (𝑒̂)  

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑠𝑒𝑑 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 =
𝑒̂

𝜎̂
 

• It allows us to check for: (i) normality in the errors, and (ii) outliers 

• Problem with using standardised residual to detect outliers: outliers near 
the ‘end’ of the line may swing the line towards it and lessen the residual, 
making it harder to detect 

 
(5) Outliers 

• For observations with large positive standardised residuals (i.e. outliers) 
there is a departure from normality  

• Outliers may distort the whole fit of the regression line 

• Only include observations with studentized residuals between ± 𝟑 and a 
normalized leverage of less than 2 

 
(6) Studentized or 𝑡 residuals 

• A better version of the standardised residuals 
• To obtain the ith studentized residual, we use all data except the ith case 

to estimate the 𝛽0, 𝛽1 and 𝜎 

• If the ith observation is an outlier, omitting that observation when 
estimating 𝛽0, 𝛽1 and 𝜎 allows us to get a better idea if the ith observation 
is an outlier 

 

(7) 𝑅2 
• 𝑅 : the absolute value of the correlation between X and Y 

1 − 𝑅2 =
𝜎2

𝑉𝑎𝑟(𝑌)
 

Proportion of the variation in Y that is not 
explained by X 

√(1− 𝑅2)  =
𝜎

√𝑉𝑎𝑟(𝑌)
 Ratio of the SD of the prediction error to 

the SD of Y 

 
(8) Leverage 

• Leverage is the potential ability of a data point to affect the estimated 
regression line 

• The larger the distance of the X value from the center of the X’s the higher 
the leverage 

• An outlier with a high leverage have more influence on the regression line 
than a low leverage outlier 

 
(9) Checking normality of the errors 

• It is done because we do not have the errors – we can only examine the 
residuals for normality 

• Normal probability plot of the studentized residual  if the observations 
come from a normal distribution, the normal probability plot will be a 
scatter about the 45° line 

 
(10) Normal quantile plot 

• Plots the quantiles of the studentized residuals vs the quantiles of a 
standard normal 

• Similar to the normal probability plot – it aims to detect non-normality in 
the data 

• If the data sample comes from a standard normal distribution, there 
should be a scatter about a straight 45° line in the normal quantile plot  

 
(11) Prediction interval (PI) 
• PI is an in-sample prediction and it is an interval around the fitted value 

𝑃𝐼 = 𝑓𝑖𝑡𝑡𝑒𝑑 ± 1.96 ∗ 𝑠𝑡𝑑𝑓⏟
𝑆𝐷 𝑜𝑓 𝑡ℎ𝑒 

𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 𝑒𝑟𝑟𝑜𝑟𝑠

 

• Meanwhile, the confidence interval (CI) provides an estimate of an 
unknown parameter, given a particular significance level 

 
(12) Adjusted 𝑅2 (𝑅𝑎

2) 

• 𝑅2 tends to overestimate how well the models fit the population  𝑅𝑎
2  

more closely reflect the goodness of fit of the model in the population 

𝑅2 = 1 −
𝐸𝑆𝑆

𝑇𝑆𝑆
=
𝑅𝑆𝑆

𝑇𝑆𝑆
 

 

𝑅𝑎
2 = 1−

𝐸𝑆𝑆
𝑛 − 𝑝 − 1
𝑇𝑆𝑆
𝑛 − 1

 

 

𝑅𝑎
2 = 1 −

𝑠2

𝑠𝑦
2 

𝐸𝑆𝑆:  residual or error sum of squares 

𝐸𝑆𝑆 =∑𝑒̂𝑖
2

𝑛

𝑖=1

 

𝑇𝑆𝑆: total sum of squares  

𝑇𝑆𝑆 =∑(𝑦𝑖 − 𝑦)
2

𝑛

𝑖=1

= (𝑛 − 1)𝑉𝑎𝑟(𝑌) 

𝑅𝑆𝑆: regression sum of squares  
𝑅𝑆𝑆 = 𝑇𝑆𝑆 − 𝐸𝑆𝑆 

𝑅𝑆𝑆 =∑𝑓𝑖𝑡𝑡𝑒𝑑𝑖
2

𝑛

𝑖=1

 

𝑛: number of observations 
𝑝: number of explanatory variables 

• 𝑅𝑎
2  penalises for extra variables through the term 

𝑛−1 

𝑛−𝑝−1
, which increases 

with 𝑝. Thus, ESS decreases as we add more variable 

• 𝑅𝑎
2  adjusts estimates of variances for degree of freedom; i.e. 

𝐸𝑆𝑆

𝑛−𝑝−1
 is an 

unbiased estimator of 𝜎2 and 
𝑇𝑆𝑆

𝑛−1
 is an unbiased estimator of 𝑉𝑎𝑟(𝑦) 

• 1 − 𝑅𝑎
2 is the ratio of the unbiased estimate of 𝜎2 from the regression to 

the unbiased estimate of 𝑉𝑎𝑟(𝑦). Smaller estimate is better 
 

Chapter 1B: Regression theory for SLR 
(1) SLR and least squares 

𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖 + 𝑒𝑖 ,      𝑖 = 1, … , 𝑛  
Assuming that 𝑒𝑖  ~ 𝑁(0, 𝜎

2) and independent 
 

• Without loss of generality, we can write:   𝑦𝑖 = 𝛽0 + 𝛽1(𝑥𝑖 − 𝑥̅) + 𝑒𝑖 
Because 𝑦𝑖 = (𝛽0 − 𝛽1𝑥̅)⏟      

𝑁𝑒𝑤 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡

+ 𝛽1𝑥𝑖 + 𝑒𝑖 

• To estimate 𝛽0 and 𝛽1 by least squares, minimise and satisfy the FOCs 

𝑄(𝛽0, 𝛽1) =∑(𝑦𝑖 − 𝛽0 − 𝛽1(𝑥𝑖 − 𝑥̅))
2

𝑛

𝑖=1

 

𝜕𝑄(𝛽0, 𝛽1)

𝜕𝛽0
= −2∑(𝑦𝑖 − 𝛽̂0 − 𝛽̂1(𝑥𝑖 − 𝑥̅)) = 0

𝑛

𝑖=1

 

∑𝑦𝑖 − 𝑛𝛽̂0 − 𝛽̂1∑(𝑥𝑖 − 𝑥̅)

𝑛

𝑖=1

= 0

𝑛

𝑖=1

 

∵ ∑(𝑥𝑖 − 𝑥̅)

𝑛

𝑖=1

=∑𝑥𝑖

𝑛

𝑖=1

−∑𝑥̅

𝑛

𝑖=1

= 𝑛𝑥̅ − 𝑛𝑥̅ = 0 

∴ 𝛽̂0 =
∑ 𝑦𝑖
𝑛
𝑖=1

𝑛
= 𝑦 

 


