Chapter 1A: Review of Simple Linear Regression (SLR)

(1) LR Model

- Error term (e): the variation in the dependent variable due to other variables that are not accounted in the model
- Assumptions:
 - $\circ E(e) = 0$
 - o e and independent variables are uncorrelated
 - $\circ e \sim N(0, \sigma^2)$
- $Y = \beta_0 + \beta_1 x_1 + e$ with $e \sim N(0, \sigma^2)$. By assumption, Y has a mean of $eta_0 + eta_1 x_1$ and is normally distributed with a standard deviation (SD) of σ
- The 95% prediction interval (PI) is: $(\hat{\beta}_0 + \hat{\beta}_1 x_1) \pm 1.96$ σ

(2) Error SD

$$\sigma = \sigma_{Y} \sqrt{\left(1 - r_{X,Y}^{2}\right)} \qquad \begin{array}{c} \sigma : \text{error SD of the errors} \\ \sigma_{Y} : \text{SD of Y} \\ r_{xy}^{2} : \text{correlation of X and Y} \end{array}$$

- To use this formula, the homoscedasticity assumption needs to hold
- $\hat{\sigma}$ = RMSE on Stata

(3) Residuals

- Residuals are estimated values of the errors
- We can evaluate the residuals, but we do not observe the errors

$$residual = \hat{e} = Y - \hat{Y}$$

- o Fitted value is the composite term: $\hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 \rightarrow \text{estimate of the}$ regression line for a given value of x_1 (part of the observation that is explained by the independent variables)
- o Error is the random part that is not explained

(4) Standardised residuals

- If the regression model assumptions are correct $\Rightarrow e \sim N(0, \sigma^2)$. Thus $\frac{e}{\sigma}$ will have a standard normal distribution and should lie between $\pm~2.6$
- e is unknown \rightarrow use the estimates of the errors (\hat{e})

Standardised residual =
$$\frac{e}{\hat{\sigma}}$$

- It allows us to check for: (i) normality in the errors, and (ii) outliers
- Problem with using standardised residual to detect outliers: outliers near the 'end' of the line may swing the line towards it and lessen the residual, making it harder to detect

(5) Outliers

- For observations with large positive standardised residuals (i.e. outliers) there is a departure from normality
- Outliers may distort the whole fit of the regression line
- Only include observations with studentized residuals between \pm 3 and a normalized leverage of less than 2

(6) Studentized or t residuals

- A better version of the standardised residuals
- To obtain the ith studentized residual, we use all data except the ith case to estimate the β_0 , β_1 and σ
- If the ith observation is an outlier, omitting that observation when estimating β_0 , β_1 and σ allows us to get a better idea if the *i*th observation is an outlier

$(7) R^2$

R - the absolute value of the correlation between X and Y

_	The absolute value of the correlation between X and 1	
	σ^2	Proportion of the variation in Y that is not
	$1 - R^2 = \frac{\sigma}{Var(Y)}$	explained by X
	$\sqrt{(1-R^2)} = \frac{\sigma}{\sqrt{1-(1-R^2)}}$	Ratio of the SD of the prediction error to
	$\sqrt{Var(Y)}$	the SD of Y

(8) Leverage

- Leverage is the potential ability of a data point to affect the estimated regression line
- The larger the distance of the X value from the center of the X's the higher
- An outlier with a high leverage have more influence on the regression line than a low leverage outlier

- It is done because we do not have the errors we can only examine the residuals for normality
- Normal probability plot of the studentized residual \rightarrow if the observations come from a normal distribution, the normal probability plot will be a scatter about the 45° line

(10) Normal quantile plot

- Plots the quantiles of the studentized residuals vs the quantiles of a standard normal
- Similar to the normal probability plot it aims to detect non-normality in
- If the data sample comes from a standard normal distribution, there should be a scatter about a straight 45° line in the normal quantile plot

(11) Prediction interval (PI)

• PI is an in-sample prediction and it is an interval around the fitted value

$$PI = fitted \pm 1.96 * \underbrace{stdf}_{SD \ of \ the}$$

Meanwhile, the confidence interval (CI) provides an estimate of an unknown parameter, given a particular significance level

(12) Adjusted R^2 (R_a^2)

• R^2 tends to overestimate how well the models fit the population $\Rightarrow R_a^2$ more closely reflect the goodness of fit of the model in the population

$$R^2 = 1 - \frac{ESS}{TSS} = \frac{RSS}{TSS}$$

$$R_a^2 = 1 - \frac{\frac{ESS}{n-p-1}}{\frac{TSS}{n-1}}$$

$$R_a^2 = 1 - \frac{s^2}{s_y^2}$$

$$ESS: \text{ residual or error sum of squares}$$

$$ESS = \sum_{i=1}^{n} \hat{e}_i^2$$

$$TSS: \text{ total sum of squares}$$

$$TSS = \sum_{i=1}^{n} (y_i - \bar{y})^2 = (n-1)Var(Y)$$

$$RSS: \text{ regression sum of squares}$$

$$RSS = TSS - ESS$$

$$RSS = \sum_{i=1}^{n} fitted_i^2$$

$$n: \text{ number of observations}$$

$$p: \text{ number of explanatory variables}$$

- R_a^2 penalises for extra variables through the term $\frac{n-1}{n-p-1}$, which increases with p. Thus, ESS decreases as we add more variable
- R_a^2 adjusts estimates of variances for degree of freedom; i.e. $\frac{ESS}{n-p-1}$ is an unbiased estimator of σ^2 and $\frac{TSS}{n-1}$ is an unbiased estimator of Var(y)
- $1 R_a^2$ is the ratio of the unbiased estimate of σ^2 from the regression to the unbiased estimate of Var(y). Smaller estimate is better

Chapter 1B: Regression theory for SLR

(1) SLR and least squares

$$y_i=\beta_0+\beta_1x_i+e_i, \quad i=1,\dots,n$$
 Assuming that $e_i\sim N(0,\sigma^2)$ and independent

- Without loss of generality, we can write: $y_i = \beta_0 + \beta_1(x_i \bar{x}) + e_i$ Because $y_i = (\beta_0 - \beta_1 \bar{x}) + \beta_1 x_i + e_i$ New intercept
- To estimate β_0 and β_1 by least squares, minimise and satisfy the FOCs

To estimate
$$\beta_0$$
 and β_1 by least squares, minimise and satisfy the FOCS
$$Q(\beta_0,\beta_1) = \sum_{i=1}^n \left(y_i - \beta_0 - \beta_1(x_i - \bar{x})\right)^2$$

$$\frac{\partial Q(\beta_0,\beta_1)}{\partial \beta_0} = -2\sum_{i=1}^n \left(y_i - \hat{\beta}_0 - \hat{\beta}_1(x_i - \bar{x})\right) = 0$$

$$\sum_{i=1}^n y_i - n\hat{\beta}_0 - \hat{\beta}_1 \sum_{i=1}^n (x_i - \bar{x}) = 0$$

$$\because \sum_{i=1}^n (x_i - \bar{x}) = \sum_{i=1}^n x_i - \sum_{i=1}^n \bar{x} = n\bar{x} - n\bar{x} = 0$$