Chapter 1A: Review of Simple Linear Regression (SLR)

(1) LR Model
e Error term (e): the variation in the dependent variable due to other

variables that are not accounted in the model
e Assumptions:

oE(e)=0

o e and independent variables are uncorrelated

oe~N(0,0%)
o Y =pfy+ B1x; +e with e ~ N(0,02). By assumption, Y has a mean of

Bo + B1x1 and is normally distributed with a standard deviation (SD) of &
e The 95% prediction interval (Pl) is: ([?0 + ﬁlxl) +1.96 g

RMSE

(2) Error SD
o : error SD of the errors
7= 0% (1 =7y) oy :SDof Y
12, : correlation of X and Y
e To use this formula, the homoscedasticity assumption needs to hold
e G =RMSE on Stata

(3) Residuals
e Residuals are estimated values of the errors
e We can evaluate the residuals, but we do not observe the errors
residual =é=Y -V
o Fitted value is the composite term: ¥ = S, + f1x,~> estimate of the
regression line for a given value of x; (part of the observation that is
explained by the independent variables)
o Error is the random part that is not explained

(4) Standardised residuals
o If the regression model assumptions are correct = e ~ N(0,02). Thus g

will have a standard normal distribution and should lie between + 2.6
e e isunknown - use the estimates of the errors (&)
é
Standardised residual = 3
e It allows us to check for: (i) normality in the errors, and (ii) outliers
e Problem with using standardised residual to detect outliers: outliers near
the ‘end’ of the line may swing the line towards it and lessen the residual,
making it harder to detect

(5) Outliers

e For observations with large positive standardised residuals (i.e. outliers)
there is a departure from normality

e Qutliers may distort the whole fit of the regression line

e Only include observations with studentized residuals between + 3 and a
normalized leverage of less than 2

(6) Studentized or t residuals

e A better version of the standardised residuals

e To obtain the ith studentized residual, we use all data except the ith case
to estimate the Sy, §; and &

e |f the ith observation is an outlier, omitting that observation when
estimating By, f1 and o allows us to get a better idea if the ith observation
is an outlier

(7) R?
e R :the absolute value of the correlation between X and Y

o? Proportion of the variation in Y that is not
Var(Y) explained by X

a
/ — R2 = —
(1=R% Var(Y)

1-R*=

Ratio of the SD of the prediction error to
the SD of Y

(8) Leverage

e Leverage is the potential ability of a data point to affect the estimated
regression line

e The larger the distance of the X value from the center of the X’s the higher
the leverage

e An outlier with a high leverage have more influence on the regression line
than a low leverage outlier

(9) Checking normality of the errors

e |t is done because we do not have the errors —we can only examine the
residuals for normality

Normal probability plot of the studentized residual = if the observations
come from a normal distribution, the normal probability plot will be a
scatter about the 45° line

(10) Normal quantile plot

e Plots the quantiles of the studentized residuals vs the quantiles of a
standard normal

e Similar to the normal probability plot — it aims to detect non-normality in
the data

e If the data sample comes from a standard normal distribution, there
should be a scatter about a straight 45° line in the normal quantile plot

(11) Prediction interval (PI)
e Plisan in-sample prediction and it is an interval around the fitted value
PI = fitted + 1.96 * stdf

—
SD of the
forecast errors

e Meanwhile, the confidence interval (Cl) provides an estimate of an
unknown parameter, given a particular significance level

(12) Adjusted R? (R2)
o R? tends to overestimate how well the models fit the population = R2
more closely reflect the goodness of fit of the model in the population

R2=1— E_SS _ R_SS ESS: residual or error sum of squares
T TSS T TSS -
ESS = Z &?
ESS i=1
RZ—1_ n—-p-1 TSS: total sum of squares
a TSS n
n—1 TSS = Z(yi - % =m—-1DVar(Y)
i=1
RZ—1— i RSS: regression sum of squares
a— S; RSS =TSS —ESS
n

RSS = Z:fitteali2

l
n: number of observations

p: number of explanatory variables
. . -1 S
e RZ penalises for extra variables through the term h, which increases

with p. Thus, ESS decreases as we add more variable

. . . . ESS .
o RZ adjusts estimates of variances for degree of freedom; i.e. p—] is an

. . TSS . . .
unbiased estimator of a2 and nopisan unbiased estimator of Var(y)

e 1 — RZ is the ratio of the unbiased estimate of g2 from the regression to
the unbiased estimate of Var(y). Smaller estimate is better

Chapter 1B: Regression theory for SLR
(1) SLR and least squares
yl=ﬁ0+[)’1xi+ei, i=1,...,n
Assuming that e; ~ N(0, g%) and independent

e Without loss of generality, we can write: y; =
Because y; = (By — B1%X) + Bix; +e;

New intercept
e To estimate B, and f3; by least squares, minimise and satisfy the FOCs
n

Q(Bo,B1) = Z(yi = Bo— P1(x; — f))z
9Q(Bo, B1) _

i=1
n
=2 (-
TR

fo—Br(xi— %)) =0
Zyl ~ o~ ﬁlz(xl -9=0

Bo+ Pr(x; —%) +e;



